• Title/Summary/Keyword: field measurements

Search Result 2,756, Processing Time 0.033 seconds

Wake-induced vibration of the hanger of a suspension bridge: Field measurements and theoretical modeling

  • Li, Shouying;Deng, Yangchen;Lei, Xu;Wu, Teng;Chen, Zhengqing
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.169-180
    • /
    • 2019
  • The underlying mechanism of the wind-induced vibration of the hangers of the suspension bridges is still not fully understood at present and hence is comprehensively examined in this study. More specifically, a series of field measurements on the No. 2 hanger of the Xihoumen Bridge was first carefully conducted. Large amplitude vibrations of the hanger were found and the oscillation amplitude of the leeward cable was obviously larger than that of the windward cables. Furthermore, the trajectory of the leeward cable was close to an ellipse, which agreed well with the major characteristics of wake-induced vibration. Then, a theoretical model for the wake-induced vibration based on a 3-D continuous cable was established. To obtain the responses of the leeward cable, the finite difference method (FDM) was adopted to numerically solve the established motion equation. Finally, numerical simulations by using the structural parameters of the No. 2 hanger of the Xihoumen Bridge were carried out within the spatial range of $4{\leq}X{\leq}10$ and $0{\leq}Y{\leq}4$ with a uniform interval of ${\Delta}X={\Delta}Y=0.25$. The results obtained from numerical simulations agreed well with the main features obtained from the field observations on the Xihoumen Bridge. This observation indicates that the wake-induced vibration might be one of the reasons for the hanger oscillation of the suspension bridge. In addition, the effects of damping ratio and windward cable movement on the wake-induced vibration of the leeward cable were numerically investigated.

Laboratory Test and Field Study of Soft Ground Improvement Effect by Using Various PVDs (실내실험과 현장실험을 통한 다양한 PVD의 연약지반개량효과)

  • Shin, Eun-Chul;Nazarova, Zhanara
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.15-21
    • /
    • 2008
  • The advantages of prefabricated vertical drains over conventional sand drains include their relatively low costs, less disturbance to the soil mass, the easinees of installation, and their flexibility which ensures the integrity of the drains during installation. This study tested the change of discharge capacities with respect to the hydraulic gradients for each lateral pressure. From the test results, as increases the overburden pressure, the clay soil is being consolidated, and also lateral pressure to the PVD specimen is increased. Therefore, the discharge capacity is decreased. The size of opening space in the core of PVDs is proportionally related to the discharge capacity. The numerical analysis was performed with utilizing computer simulation with considering field conditions. The results of numerical analysis are compared well with the field measurements.

  • PDF

Characterization of Cone Index and Tillage Draft Data to Define Design Parameters for an On-the-go Soil Strength Profile Sensor

  • Chung S. O.;Sudduth Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 2004
  • Precision agriculture aims to minimize costs and environmental damage caused by agriculture and to maximize crop yield and profitability, based on information collected at within-field locations. In this process, quantification of soil physical properties, including soil strength, would be useful. To quantify and manage variability in soil strength, there is need for a strength sensor that can take measurements continuously while traveling across the field. In this paper, preliminary analyses were conducted using two datasets available with current technology, (1) cone penetrometer readings collected at different compaction levels and for different soil textures and (2) tillage draft (TD) collected from an entire field. The objective was to provide information useful for design of an on-the-go soil strength profile sensor and for interpretation of sensor test results. Analysis of cone index (CI) profiles led to the selection of a 0.5-m design sensing depth, 10-MPa maximum expected soil strength, and 0.1-MPa sensing resolution. Compaction level, depth, texture, and water content of the soil all affected CI. The effects of these interacting factors on data obtained with the soil strength sensor should be investigated through experiments. Spatial analyses of CI and TD indicated that the on-the-go soil strength sensor should acquire high spatial-resolution, high-frequency ($\ge$ 4 Hz) measurements to capture within-field spatial variability.

  • PDF

Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon

  • He, Yinghou;Li, Qiusheng;Chan, Pakwai;Zhang, Li;Yang, Honglong;Li, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.575-595
    • /
    • 2020
  • The characteristics of winds associated with tropical cyclones are of great significance in many engineering fields. This paper presents an investigation of wind characteristics over a coastal urban terrain based on field measurements collected from multiple cup anemometers and ultrasonic anemometers equipped at 13 height levels on a 356-m-high meteorological tower in Shenzhen during severe Typhoon Hato. Several wind quantities, including wind spectrum, gust factor, turbulence intensity and length scale as well as wind profile, are presented and discussed. Specifically, the probability distributions of fluctuating wind speeds are analyzed in connection with the normal distribution and the generalized extreme value distribution. The von Karman spectral model is found to be suitable to depict the energy distributions of three-dimensionally fluctuating winds. Gust factors, turbulence intensity and length scale are determined and discussed. Moreover, this paper presents the wind profiles measured during the typhoon, and a comparative study of the vertical distribution of wind speeds from the field measurements and existing empirical models is performed. The influences of the topography features and wind speeds on the wind profiles were investigated based on the field-measured wind records. In general, the empirical models can provide reasonable predictions for the measured wind speed profiles over a typical coastal urban area during a severe typhoon.

Superconductivty and magnetic properties of $(Ru_{1-x}Nb_x)Sr_2(Sm_{1.4}Ce_{0.6})Cu_2O_z$

  • Lee, H.K.;Bae, S.M.;Lee, J.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.1-4
    • /
    • 2013
  • We investigated the effect of Nb substitution for Ru on the structural and magnetic properties of $(Ru_{1-x}Nb_x)\;Sr_2(Sm_{1.4}Ce_{0.6})Cu_2O_z$ Samples. X-ray diffraction measurements indicated that nearly single-phase samples are formed in the range from x = 0 to 1.0. The superconducting transition temperature determined from the inflection in the field-cooled magnetic susceptibility decreased only slightly from $T_c$ = 25 K for x = 0 to $T_c$ = 22 K for x = 1.0, in consistent with the change in room temperature thermopower of the samples. However, the Nb substitution for Ru above x = 0.25 significantly suppressed the weak ferromagnetic component of the field-cooled magnetic susceptibility. It was also found that the Nb substitution for Ru results in an enhanced diamagnetic susceptibility with Nb content above x = 0.5 in both zero field-cooled and field-cooled magnetization measurements, in contrast to the behavior of the samples with $x{\leq}0.5$ in which the diamagnetic susceptibility decreases as the Nb content increases.

Measurement and Analysis of Electric Field near 345/154kV UHV Overhead Transmission Lines and Substations (345/154kV 초고압 송변전설비 주변에서의 전장의 측정과 분석)

  • Lee, J.G.;Ahn, C.H.;Lee, B.H.;Kil, G.S.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1861-1863
    • /
    • 1996
  • In this paper, measurements and analyses of ELF electric fields in the vicinity of UHV overhead transmission lines and substations have been conducted. Planar-type sensors have been developed with special consideration of picking up lower frequency and spatial components without any distortion. So finally the electric field measuring system has the frequency bandwidth of 7[Hz] to 2.7[MHz] and the response sensitivity of 0.094[mV/V/m]. A brief description of design rules of the measuring system and measurement procedures is introduced. The actual survey near 154 and 345[kV] overhead transmission lines and power subststions was carried out and analyzed. It may be inferred from these results that the electric field intensity exeeds 7[kV/m] only in very few cases particularly at the substations so that the field measurements meet almost limits or guidelines that various authorized international institutes recommend.

  • PDF

The Forward Prediction of Radiation Sound Field Using Acoustic Holography : Basic Theory and Signal Processing Method (음향 홀로그래피를 이용한 방사 음장의 전방예측 방법에 관한 기본 이론 및 신호처리 방법)

  • 김양한;권휴상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1654-1668
    • /
    • 1992
  • The acoustic field resulted by the radiation of sound from vibrating structure is predicted based on the sound pressure measurements. The sound pressures are measured at discreate point on the measurement plane ; Hologram. Based on these discreate measurements, the sound field away from the acoustic source is constructed based on the discreate form of Kirchhoff-Helmohltz integral equations The velocities, intensities, and pressures of arbitrary plane of interest in space are predicted and visualized The effects on the sound field reconstruction ; finite aperture effect, effect of finite sampling interval in space studied in terms of wraparound error and spatial aliasing. Numerical simulations and experimental verifications are performed to see these effects. To reduce the wraparound error, zero padding technique in space is used and the usefulness of the method is demonstrated by various examples.

Investigation for the deformation behavior of the precast arch structure in the open-cut tunnel (개착식 터널 프리캐스트 아치 구조물의 변형 거동 연구)

  • Kim, Hak Joon;Lee, Gyu-Phil;Lim, Chul Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2019
  • The behavior of the 3 hinged precast arch structure was investigated by comparing field measurements with numerical analyses performed for precast lining arch structures, which are widely used for the open-cut tunnel. According to the field measurements, the maximum vertical displacement occurred at the crown with upward displacements during the backfilling up to the crown of the arch and downward displacements at the backfill height above the crown. The final crown displacement was 19 mm upward from the original position. The horizontal displacement at the sidewall, which had a maximum horizontal displacement, occurred inward of the arch when compacting the backfill up to the crown and returned to the original position after completing the backfill construction. According to the analysis of displacement measurements, economical design is expected to be possible for precast arch structures compared to rigid concrete structures due to ground-structure interactions. Duncan model gave good results for the estimation of displacements and deformed shape of the tunnel according to the numerical analyses comparing with field measurements. The earth pressure coefficients calculated from the numerical analyses were 0.4 and 0.7 for the left and the right side of the tunnel respectively, which are agreed well with the eccentric load acting on the tunnel due to topographical condition and actual field measurements.

Initial-phase Sensitivity Analysis of Harmonic Measurements via Windowed DFT

  • Song, Shuping;Wang, Fuzong;Cheng, Guozhu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2014
  • When the windowed DFT algorithm is applied in harmonic measurements, the problem of initial-phase sensitivity will be encountered, this has an effect on harmonic amplitude accuracy. In this paper, the origin of initial-phase sensitivity is analyzed and the main factors that influence the level of initial-phase sensitivity are demonstrated. A method of reducing initial-phase sensitivity is proposed to increase the stability of harmonic measurements. We found that initial-phase sensitivity is determined by the side lobe peak level of the window functions when synchronous deviation is fixed. In addition, increasing the length of the time recorded can be used to remove initial-phase sensitivity. The correctness and validity of our conclusions have been confirmed through numerical results and field tests.

A Measuring Data Calibration Technique for Measurement and Verification of Energy-Efficiency Programs (효율향상 프로그램의 성과계량검증을 위한 계측자료 보정 기법)

  • Cho, Ki-Seon;Park, Jong-Jin;Rhee, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.834-836
    • /
    • 2005
  • This paper describes algorithms for enhancing the reliability of measurements to verify the performance of energy efficiency programs with an simple method. Fundamentally, measurements contain erroneous data because of the various causes. and so proper procedures or schemes are prepared before the performance is evaluated. In this paper, we propose an approach for detecting and correcting an adulterate data, such as missing and bad data. Erroneous data are detected or corrected by pre-described measuring conditions, ensemble average, and standard deviation of measurements at measuring time. The proposed algorithms are tested by field test measurements. From case studies we drew the promising results.

  • PDF