• Title/Summary/Keyword: field measurement of equivalent noise level

Search Result 10, Processing Time 0.029 seconds

Evaluation on Noise Level of One-Room Type Multi-Family Housing Around Campus (대학주변 원룸형 다가구주택의 소음측정평가)

  • Choi, Yoon-Jung
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2003.11a
    • /
    • pp.95-100
    • /
    • 2003
  • The purpose of this study is to evaluate the noise environment of one-room type multi-family housing around the campus. The field measurements on equivalent noise level of indoor and outdoor were carried out in 6 subject house units during the 26th${\sim}$28th of November 2002. The results are as follows. 1) Outdoor noise levels of 6 subject buildings were distributed 52.8${\sim}$65.3dB(A) and were inappropriate to the standard for environmental noise, 55dB(A). 2) Indoor noise level of 6 subject house units were measured 27.5${\sim}$63.5dB(A). These values were higher than the indoor noise standard (40dB(A)) except subject house D(average 37.6dB(A)). 3) It was found that the differences of indoor noise levels between subject house units were caused by resident's living factor, characteristics of window, and existence of balcony.

  • PDF

Analysis on Indoor Noise Condition of Cafeteria in University Campus (대학교 학생식당의 소음저감을 위한 실내소음 실태분석)

  • Choi, Yoon-Jung;Lee, Seon-A;Kim, Hye-Kyeong
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2007.05a
    • /
    • pp.85-88
    • /
    • 2007
  • This research is a case study for improving the sound environmental quality of cafeteria in university campus. The purpose of the study is to investigate the present condition of physical level, type, and source of indoor noise by comparison with a restaurant near campus. Methods were field survey with measurement on equivalent and instant noise level and observation on noise type, and questionnaire survey to 60 students users. Surveys were carried out in the 8th and the 14th of December 2005. The results are as follows. 1) Indoor noise levels of the cafeteria were measured as $67.2{\sim}76.6$(average 73.3) dB(A)Leq5min and $60.3{\sim}90.5$(average 71.2) dB(A), but noise levels of the restaurant were $61.6{\sim}70.4$(average 66.9) dB(A)Leq5min and $59.8{\sim}70.6$(average 64.9) dB(A). 2) The users's responses on major noise type were 'noise by handling equipment and tableware', 'noise by moving chairs', and 'taking noise' in cafeteria, but 'taking noise' and 'background music' in restaurant. 3) It was found that the differences of indoor noise condition between with 2 subjects were caused by finishing materials, kitchen division type, and furniture type.

  • PDF

A Case Study for Analysis on Present Condition and Cause of Indoor Noise in University Cafeteria (대학교 학생식당의 실내소음 실태 및 원인 분석 사례연구)

  • Choi, Yoon-Jung;Lee, Seon-A;Kim, Hye-Kyeong
    • Journal of the Korean housing association
    • /
    • v.18 no.5
    • /
    • pp.85-91
    • /
    • 2007
  • This is a case study for improving the sound environmental quality of cafeteria in university campus. The purpose of the study is to find out the present condition of physical level, type, and cause of indoor noise of cafeteria in university campus by comparison with a restaurant near campus. Research methods were field survey and questionnaire survey. Field survey was consisted of measurement on equivalent and instant noise level and observation on noise type. Respondents of questionnaire survey were 60 students using subject cafeteria or restaurant. Surveys were carried out in the 8th and in the 14th of December 2005. The results are as follows. 1) Indoor noise levels of the cafeteria were measured as $67.2{\sim}76.6$ (average 73.3) dB(A)Leq5min and $60.3{\sim}90.5$ (average 71.2) dB (A), exceeded the indoor noise recommended value of ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers). But noise levels of the restaurant were $61.6{\sim}70.4$ (average 66.9) dB(A)Leq5min and $59.8{\sim}70.6$ (average 64.9) dB(A). 2) The users's responses on major noise type in the cafeteria were 'noise by handling equipment and tableware', 'noise by moving chairs', and 'talcing noise', but 'taking noise' and 'background music' in the restaurant. 3) It was found that indoor noise level of the cafeteria was caused by sound reflection of finishing materials, noise diffusion by open type kitchen, and dragging noise of movable furniture.

Field Test and Evaluation of Wind Turbine Noise according to IEC Standards (IEC 규격에 따른 풍력 터빈 소음의 현장 실증)

  • Cheong, Cheol-Ung;Jung, Sung-Su;Cheung, Wan-Sup;Shin, Soo-Hyun;Chun, Se-Jong;Lee, Sang-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.579-582
    • /
    • 2005
  • The sound measurement techniques in IEC 61400-11 are applied to field test and evaluation of noise emission from 1.5 MW wind turbine generator (WTG) at Yongdang-Lee and 650 kW WTG at Hangwon-Lee in Jeju Island. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. 1.5 MW WTG at Yongdang is found to emit lower sound power than 660 kW one at Hangwon, which seems to be due to lower rotating speed of the rotor of WTG at Yongdang. Equivalent continuous sound pressure level s (ECSPL) of 650 kW WTG at Hangwon vary more widely with speed than those of 1.5 MW WTG at Yongdang. The reason for this is believed to be the fixed blade-rotating speed of WTG at Yongdang. One-third octave band analysis of the measured data show that the band components around 400-500 Hz are dominant for 1.5 MW WTG at Yongdang and those around 1K Hz are dominant for 660 kW WTG at Hangwon.

  • PDF

Field Test and Evaluation of Noise from Wind Turbine Generators at Yongdang and Hangwon in Jeju Island (제주도 용당/행원 풍력발전기 현장 소음 실증)

  • Cheong, Cheol-Ung;Jeong, Sung-Su;Cheung, Wan-Sup;Shin, Su-Hyun;Jeon, Se-Jong;Lee, Saeng-Hui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.818-821
    • /
    • 2005
  • The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from 1.5 MW wind turbine generator (WTG) at Yongdang and 660 kW WTG at Hangwon in Jeju Island. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. 1.5 MW WTG at Yongdang is found to emit lower sound power than 660 kW one at Hangwon, which seems to be due to lower rotating speed of the rotor of WTG at Yongdang. Equivalent continuous sound pressure levels (ECSPL) of 660 kW WTG at Hangwon vary more widely with wind speed than those of 1.5 MW WTG at Yongdang. The reason for this is believed to be the fixed blade rotating speed of WTG at Yongdang. One-third octave band analysis of the measured data show that the band components around 400-500 Hz are dominant for 1.5 MW WTG at Yongdang and those around 1K Hz are dominant for 660 kW WTG at Hangwon.

  • PDF

Analysis on the Characteristic of Living Noise in Residential Buildings (공동주택의 생활 소음원별 특성 분석)

  • Shin, Jaemin;Song, Hyomin;Shin, Yoonseok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.123-131
    • /
    • 2015
  • The purpose of this study is to analysis the noise characteristics about noise type, sound level, and noise occurrence frequency of living noise in residential buildings. The field measurement was conducted to classify the types of living noise and to examine the actual states of noise occurrence for each living noise source. Among the 24 types of living noise, 10 noise sources were selected based on the loudness and frequency of each living noise. The result indicated that 10 noise sources show the difference on each noise occurrence characteristic by time zones. Therefore, to reduce noise, a management plan should be introduced based on the actual state of the noise occurrence, considering the individual noise source and the time slot during noise frequently occurs. Moreover, the noise standard for each noise types of living noise should be specificated and the education for residents about characteristics of living noise types should be conducted to improve the consciousness of residents.

Characteristics of Noise Emission from Wind Turbine Generator According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터번 발전기의 방사 소음 특성)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.941-945
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and fun span pitch control. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbine generators (WTG) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. It is found that while 1.5 MW WTG using the stall control is found to emit lower sound power than 660 kW one using the pitch control at low wind speed (below 8 m/s), sound power from the former becomes greater than that of the latter in the higher wind speed. Equivalent continuous sound pressure levels (ECSPL) of the stall control type of WTG vary more widely with wind speed than those of the pitch control type of WTG These characteristics are believed to be strongly dependent on the basic difference of the airflow around the blade between the stall regulation and the pitch control types of WTG. These characteristics according to the methods of power regulation lead to the very different noise emission characteristics of WTG depending on the seasons because the average wind speed in summer is lower than the critical velocity over which the airflow on the suction side of blade in the stall types of WT are separated. These results propose that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

  • PDF

Research on Speed Estimation Method of Induction Motor based on Improved Fuzzy Kalman Filtering

  • Chen, Dezhi;Bai, Baodong;Du, Ning;Li, Baopeng;Wang, Jiayin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.272-275
    • /
    • 2014
  • An improved fuzzy Kalman filtering speed estimation scheme was proposed by means of measuring stator side voltage and current value based on vector control state equation of induction motor. The designed fuzzy adaptive controller conducted recursive online correction of measurement noise covariance matrix by monitoring the ratio of theory residuals and actual residuals to make it approach real noise level gradually, allowing the filter to perform optimal estimation to improve estimation accuracy of EKF. Meanwhile, co-simulation scheme based on MATLAB and Ansoft was proposed in order to improve simulation accuracy. Field-circuit coupling problems of induction motor under the action of vector control were solved and the parameter optimization accuracy was improved dramatically. The simulation and experimental results show that this algorithm has a strong ability to inhibit the random measurement noise. It is able to estimate motor speed accurately, and has superior static and dynamic characteristics.

Characteristics of Noise Emission from Wind Turbine According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터빈의 방사 소음 특성)

  • Cheong, Cheol-Ung;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.864-871
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and full span pitch control. The main purpose of this paper is to experimentally identify the characteristics of noise emission of wind turbines according to the power regulation types. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbines (WT) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence, third-octave band levels and tonality are evaluated for both of WTs. It is observed that equivalent continuous sound pressure levels (ECSPL) of the stall control type of WT continue to increase with increasing wind speed whereas those of the pitch control type of WT show less correlation with wind speed. These observed characteristics are believed to be due to the different airflow patterns around the blade between the stall regulation and the pitch control types of WT; the airflow on the suction side of blade in the stall types of WT are separated at the high wind speed. It is also found that the 1.5 MW WT using the stall control emits lower sound power than 660 kW one using the pitch control at wind speeds below 8m/s, whereas sound power of the former becomes higher than that of the latter in the wind speed over 8m/s. This wind-speed dependence of sound power leads to the very different noise omission characteristics of WTs depending on the seasons because the average wind speed in summer is lower than 8m/s whereas that in summer is higher. Based on these experimental observations, it is proposed that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

Post Occupancy Evaluation for Office Building with An Underfloor Air Distribution System (바닥공조 시스템이 적용된 사무공간의 거주후 성능평가)

  • Yoon, Seong-Hoon;Jang, Hyang-In;Jung, Hae-Kwon;Choi, Sun-Kyu;Yu, Ki-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.78-85
    • /
    • 2011
  • In this study, an underfloor air distribution(UFAD) system installed on the S. office building was evaluated for its indoor environmental quality performance. Field measurement and survey were conducted for the overall POE(Post Occupied Evaluation). PMV(including temperature, humidity, air velocity and globe temperature) and several environmental components were measured while thermal comfort, thermal sensation, acoustical environment and others. were investigated through survey. Except for the direct upper part of the air supply diffuser on the floor, the indoor velocity was less than 0.25m/s, which has been suggested by ASHRAES tandard 55 as the limit for thermal comfort. MRT of the perimeter zone of the room showed a higher value than that in the interior because of the introduced solar radiation through the building envelope. PMV was generally maintained in the range of thermal comfort (from -0.5 to +0.5), though it weighted to the warm side. It was reported to have 61% positive response on thermal comfort and 55% on neutral thermal sensation. The results of each survey item showed some gender-based differences. Specifically, female respondents had higher degree of dissatisfaction with indoor air cleanness and acoustical privacy. The working surface showed more than 400 lux and the equivalent noise level showed less than 50 dB(A). In conclusion, the results of the measurement and survey showed good agreement. Indoor environmental quality of the subject office room where the UFAD system was installed showed an overall excellent performance.