• Title/Summary/Keyword: field emitter displays

Search Result 16, Processing Time 0.022 seconds

Simulation of the Strip Type CNT Field Emitter Triode Structure (띠 모양의 에미터를 가지는 탄소나노튜브 삼전극 전계방출 디스플레이 소자의 시뮬레이션)

  • 류성룡;이태동;김영길;변창우;박종원;고성우;천현태;고남제
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1023-1028
    • /
    • 2003
  • The field emission characteristics are studied by simulation for carbon nanotube triode structures with a strip-shaped emitter and a gate hole aligned with it. Two structures, one with double-edge and the other with single edge are analyzed. They show good emission characteristics. Emissions of electrons are concentrated on the edges of emitter and the emitted current increases as the distance between emitter and gate decreases. For single-edged emitter, the emitted electrons form a narow strip-shaped beam which has a good directionality. These triode structures have advantages in that they can be easily fabricated and aligned for assembly.

Field Emission Properties of Carbon Nanotubes on Graphite Tip

  • Shin, Ji-Hong;Shin, Dong-Hoon;Song, Yenan;Sun, Yuning;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.383-383
    • /
    • 2011
  • Generally, field emitters can be categorized into two types according to the emitter shape, one is a planar field emitter and the other is a point emitter. The planar field emitter is used for displays, flat lamps and signage boards. On the other hands, the point field emitter is expected to play a significant role in x-ray sources and electron beam sources. Such applications of the point field emitters, especially, need large emission current and high emission stability with a small electron beam size. A few reports announced point emitters made by carbon nanotubes (CNTs). However, they still have suffered from poor reproducibility and low emission current. Here, we demonstrated high performance CNT point emitters by attaching CNTs onto graphite rod. Graphite rod exhibited good electrical conductivity and chemical stability. In this method, the shape of the point emitter could be easily controlled by changing the length and diameter of the graphite rod. The CNT point emitter showed emission current over 1 mA at an applied electric field of 1.4 V/${\mu}m$. We consider that the stable emission performance is attributed to the stable contact between CNTs and graphite rod.

  • PDF

Simulation of the Stripe type CNT Field Emitter Triod Structure (띠 모양의 에미터를 가지는 탄소나노튜브 삼전극 전계방출 디스플레이 소자의 시뮬레이션)

  • Ryu, Seong-Ryong;Lee, Tae-Dong;Kim, Yong-Gil;Byun, Chang-Woo;Park, J.W.;Ko, S.W.;Chun, H.T.;Ko, N.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.510-513
    • /
    • 2002
  • 띠모양의 에미터와 에미터와 정렬된 띠모양의 케이트 구멍을 가진 탄소나노튜브(CNT) 삼극 구조에 대하여 전계방출 시뮬레이션을 수행하였다. 전자방출은 주로 가장자리에서 발생하였으며 에미터와 게이트사이의 간격이 가까워지면 급격히 증가하였다. 전자방출 특성도 상당히 우수하였다. 한쪽 가장자리만을 사용한 삼극구조의 경우에는 방출된 전자의 궤적이 좁은 띠모양으로 형성되어 방향성이 매우 우수하게 나타났다. 띠모양의 에미터 및 게이트로 이어진 삼극구조는 제작이 용이하고 조립할 때 정렬이 쉬운 장점이 있다.

  • PDF

Carbon nanotubes for Field Emission Displays.

  • Milne, W.I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.919-922
    • /
    • 2004
  • The Field Emission Display is potentially an excellent display with high brightness and low power consumption with wide viewing angle but more work is still needed in order to identify the ideal electron emitter for such displays. This paper will review the work that we have carried out in Cambridge aver the past couple of years on optimisation of Carbon nanotubes for use as the cold cathode emitters that are possible candidates as the electron sources in second generation FEDs.

  • PDF

Electron Emission Mechanism in the Surface Conduction Electron Emitter Displays

  • Cho, Guang-Sup;Choi, Eun-Ha;Kim, Young-Guon;Kim, Dai-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.139-140
    • /
    • 2000
  • The origin of the display current in the surface conduction electron emitter displays has been verified in the calculation of the electron trajectory. Some electrons move directly toward the display surface as an anode current which is generated due to the inertial force of electron motion along the curved electric field lines with a small curvature near the fissure area..

  • PDF

Active-Matrix Cathodes though Integration of Amorphous Silicon Thin-Film Transistor with triode -and Diode-Type field Emitters

  • Song, Yoon-Ho;Cho, Young-Rae;Hwang, Chi-Sun;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.72-77
    • /
    • 2001
  • Amorphous silicon thin-film transistors (a-Si TFTs) were incorporated into Mo-tip-based triode-type field emitters and diode-type ones of carbon nanotubes for an active-matrix cathode (AMC) plate of field emission displays. Also, we developed a novel surface-treatment process for the Mo-tip fabrication, which gleatly enhanced in the stability of field emission. The field emission currents of AMC plates on glass substrate were well controlled by the gate bias of a-Si TFTs. Active-matrix field emission displays (AMFEDs) with these AMC plates were demonstrated in a vacuum chamber, showing low-voltage matrix addressing, good stability and reliability of field emission, and highly uniform light emissions from the anode plate with phosphors. The optimum design of AMFEDs including a-Si TFTs and a new light shield/focusing grid is discussed.

  • PDF

Emission Characteristics of 0.7' Monochrome MOSFET-Controlled Field Emission Display in a High Vacuum Chamber

  • Lee, Jong-Duk;Oh, Chang-Woo;Kim, Il-Hwan;Park, Jae-Woo;Park, Byung-Gook
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.66-71
    • /
    • 2001
  • MCFEDs (MOSFET-Contoolled Field Emission Displays) were fabricated to evaluate the validity of MCFEA for display application. The electrical properties of FEAs (Field Emitter Arrays), HVMOSFETs (High-Voltage MOSFETs), and MCFEAs (MOSFET-Controlled Field Emitter Arrays) were measured. The extraction gate voltage of the FEAs to obtain the anode current of 10 nA/tip was around 71 V. The breakdown voltages of the HVMOSFETs were above 81 V for all the samples. The I-V characteristics of the MCFEAs showed that the emission currents of the FEAs were well controlled depending on the control gate voltages of the HVMOSFETs. To avoid the harmful effects during the packaging process, the performance of the MCFEDs was evaluated in a high vacuum chamber. The emission images of the MCFEDs were controlled through very-through operation. From the comparison with a conventional FED, it was proven that the poor uniformity of FED could be improved through the integration with HVMOSFET.

  • PDF

Fabrication of field emitters using a filtration-taping-transfer method

  • Song, Ye-Nan;Shin, Dong-Hoon;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.466-466
    • /
    • 2011
  • There have been several methods to fabricate carbon nanotube (CNT) emitters, which include as-grown, spraying, screen-printing, electrophoresis and bonding methods. Unfortunately, these techniques generally suffer from two main problems. One is a weak mechanical adhesion between CNTs and the cathode. The as-grown, spraying and electrophoresis methods show a weak mechanical adhesion between CNTs and the cathodes, which induces CNT emitters pulled out under a high electric field. The other is a severe degradation of the CNT tip due to organic binders used in the fabrication process. The screen-printing method which is widely used to fabricate CNT emitters generally shows a critical degradation of CNT emitters caused by the organic binder. Such kinds of problems induce a short lifetime of the CNT field emitters which may limit their practical applications. Therefore, a robust CNT emitter which has the strong mechanical adhesion and no degradation is still a great challenge. Here, we introduce a simple and effective technique for fabrication of CNT field emitter, namely filtration-taping-transfer method. The CNT emitters fabricated by the filtration-taping-transfer method show the low turn-on electric fields, the high emission current, good uniformity and good stability. The enhanced emission performance of the CNT emitters is mainly attributed to high emission sites on the emitter area, and to good ohmic contact and strong mechanical adhesion between the emitters and cathodes. The CNT emitters using a simple and effective fabrication method can be applied for various field emission applications such as field emission displays, lamps, e-beam sources, and x-ray sources. The detail fabrication process will be covered at the poster.

  • PDF

Carbon-Nanotubes Grown from Spin-Coated Nanoparticles for Field-Emission Displays

  • Kim, Do-Yoon;Yoo, Ji-Beom;Han, In-Taek;Kim, Ha-Jin;Kim, Ha-Jong;Jin, Yong-Wan;Kim, Jong-Min
    • Journal of Information Display
    • /
    • v.6 no.2
    • /
    • pp.19-24
    • /
    • 2005
  • The density controlled carbon nanotubes (CNTs) are grown on the iron acetate nanoparticles by using the freeze-dry method. The iron-acetate [Fe(II)$(CH_3COO)_2$] solution is used to prepare the catalytic iron nanoparticles. The density of CNTs is controlled in order to enhance the field emission process. Furthermore, the patterning of the iron nanoparticle catalyst-layer for the fabrication of electronic devices is simply achieved by using alkaline solution, TMAH (tetramethylammonium hydroxide). We applied this patterning process of catalyst layer to form the electron emitter with under-gate type triode structure.

Enhanced Field Emission and Luminescent Properties of Straightened Carbon Nanotubes to be Applied in Field Emission Display

  • Lee, Hyeong-Rag;Kim, Do-Hyung;Kim, Chang-Duk;Jang, Hoon-Sik
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.35-42
    • /
    • 2003
  • The field emission and luminescent properties of carbon nanotubes (CNTs) that were straightened by argon ion irradiation were investigated. Argon ion irradiation permanently straightened both as-grown and screen-printed CNTs (SP-CNTs) in the presence of a strong electric field. The straightening process enhanced the emission properties of as-grown CNT films by showing a decrease in turn-on field, an increase in total emission current, and a stable emission. Recurring problems associated with SP-CNTs, such as bent or/and buried CNTs and the degradation in binder-residue-induced emission, were improved by the permanent straightening of CNTs and protruding CNTs from binders by the irradiation treatment, in addition to its surface cleaning effect. Furthermore, we confirmed that the number of emission sites increases by observing the luminescent properties of CNT films after the straightening. These findings here suggest that ion irradiation treatment is an effective method for achieving uniform field emission and to reduce the electrical aging time.