• Title/Summary/Keyword: field effect transistor

Search Result 795, Processing Time 0.028 seconds

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

TID and SEL Testing on PWM-IC Controller of DC/DC Power Buck Converter (DC/DC 강압컨버터의 PWM-IC 제어기의 TID 및 SEL 실험)

  • Lho, Young Hwan;Hwang, Eui Sung;Jeong, Jae-Seong;Han, Changwoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.79-84
    • /
    • 2013
  • DC/DC switching power converters are commonly used to generate a regulated DC output voltage with high efficiency. The DC/DC converter is composed of a PWM-IC (pulse width modulation-integrated circuit) controller, a MOSFET (metal-oxide semiconductor field effect transistor), inductor, capacitor, etc. It is shown that the variation of threshold voltage and the offset voltage in the electrical characteristics of PWM-IC increase by radiation effects in TID (Total Ionizing Dose) testing at the low energy ${\gamma}$ rays using $^{60}Co$, and 4 heavy ions applied for SEL (Single Event Latch-up) make the PWM pulse unstable. Also, the output waveform for the given input in the DC/DC converter is observed by the simulation program with integrated circuit emphasis (SPICE). TID testing on PWM-IC is accomplished up to the total dose of 30 krad, and the cross section($cm^2$) versus LET($MeV/mg/cm^2$) in the PWM operation is studied at SEL testing after implementation of the controller board.

Statistical Design of Experiments and Analysis: Hierarchical Variance Components and Wafer-Level Uniformity on Gate Poly-Silicon Critical Dimension (통계적 실험계획 및 분석: Gate Poly-Silicon의 Critical Dimension에 대한 계층적 분산 구성요소 및 웨이퍼 수준 균일성)

  • Park, Sung-min;Kim, Byeong-yun;Lee, Jeong-in
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.179-189
    • /
    • 2003
  • Gate poly-silicon critical dimension is a prime characteristic of a metal-oxide-semiconductor field effect transistor. It is important to achieve the uniformity of gate poly-silicon critical dimension in order that a semiconductor device has acceptable electrical test characteristics as well as a semiconductor wafer fabrication process has a competitive net-die-per-wafer yield. However, on gate poly-silicon critical dimension, the complexity associated with a semiconductor wafer fabrication process entails hierarchical variance components according to run-to-run, wafer-to-wafer and even die-to-die production unit changes. Specifically, estimates of the hierarchical variance components are required not only for disclosing dominant sources of the variation but also for testing the wafer-level uniformity. In this paper, two experimental designs, a two-stage nested design and a randomized complete block design are considered in order to estimate the hierarchical variance components. Since gate poly-silicon critical dimensions are collected from fixed die positions within wafers, a factor representing die positions can be regarded as fixed in linear statistical models for the designs. In this context, the two-stage nested design also checks the wafer-level uniformity taking all sampled runs into account. In more detail, using variance estimates derived from randomized complete block designs, Duncan's multiple range test examines the wafer-level uniformity for each run. Consequently, a framework presented in this study could provide guidelines to practitioners on estimating the hierarchical variance components and testing the wafer-level uniformity in parallel for any characteristics concerned in semiconductor wafer fabrication processes. Statistical analysis is illustrated for an experimental dataset from a real pilot semiconductor wafer fabrication process.

유도결합 플라즈마를 이용한 $HfAlO_3$ 박막의 선택비 연구

  • Ha, Tae-Gyeong;U, Jong-Chang;Eom, Du-Seung;Yang, Seol;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.48-48
    • /
    • 2009
  • 최근 빠른 동작속도와 고 집적도를 얻기 위해 metal oxide semiconductor field effect transistor (MOSFET) 의 크기는 계속 해서 줄어들고 있다. 동시에 게이트의 절연층도 얇아지게 된다. 절연층으로 사용되는 $SiO_2$ 의 두께가 2nm 이하로 얇아 지게 되면 터널링에 의해 누설 전류가 발생하게 된다. 이 문제를 해결하기 위해 $SiO_2$ 를 대체할 고유전체 물질의 연구가 활발하다. 고유전체 물질 중에는 $ZrO_2,\;Al_2O_3,\;HfO_2$ 등이 많이 연구 되어 왔다. 하지만 유전상수 이외에 band gap energy, thermodynamic stability, recrystallization temperature 등의 특성이 좋지 않아 대체 물질로 문제점이 있다. 이를 보안하기 위해 산화물을 합금과 결합시키면 서로의 장점들이 합쳐져 기준들을 만족하는 물질을 만들 수 있고 $HfAlO_3$가 그 중 하나이다. Al를 첨가하는 이유는 문턱전압을 낮추기 위해서다. $HfAlO_3$는 유전상수 18.2, band gap energy 6.5 eV, recrystallization temperature 800 $^{\circ}C$이고 열역학적 특성이 안정적이다. 게이트 절연층은 전극과 기판사이에 적층구조를 이루고 있어 이방성인 드라이 에칭이 필요하고 공정 중 마스크물질과의 선택비가 높아야한다. 본 연구는 $HfAlO_3$박막을 $BCl_3/Ar,\;N_2/BCl_3/Ar$ 유도결합 플라즈마를 이용해 식각했다. 베이스 조건은 RF Power 500 W, DC-bias -100 V, 공정압력 15 mTorr, 기판온도 40 $^{\circ}C$ 이다. 가스비율, RF Power, DC-bias, 공정 압력에 의한 마스크물질과 의 선택비를 알아보았다.

  • PDF

ANALYSIS OF FLUIDIC BEAD CUBE EMBEDDED PORTABLE CMOS SENSING SYSTEM FOR IMMUNO REACTION MONITORING (유체소자가 집적화된 면역검사용 휴대용 CMOS 바이오칩의 분석)

  • Jeong, Yong-Won;Park, Se-Wan;Kim, Jin-Seok;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.755-758
    • /
    • 2005
  • This paper describes the novel immunoassay sensing system for a portable clinical diagnosis system. It consists of a bead cage reactor and a CMOS integrated biosensor. It showed the simple and easy antibody coating method on beads by flow-through avidin biotin complex technology in a microfluidic device. It showed just 90 nL sample consumption and good result for the application of alpha feto protein. The bead cage reactor has the role of the antibody coating, antigen binding and enzyme linking for the electrochemical sensing method. The CMOS biosensor consists of ISFET (ion selective field effect transistor) biosensor and temperature sensor for detecting pH that is the byproduct of enzyme reaction. The sensitivity is 8 $kHz/^{\circ}C$ in a temperature sensor and 33 mV/pH in a pH sensor. After filling the 15 um polystyrene beads in bead cage, antibody flowed and reacted to beads. Subsequently, the biotinylated antigen flowed and bound to the antibody and GOD (glucose oxidase)-avidin conjugate flowed and reacted to the biotin of the biotinylated antigen. After this reaction process, glucose solution flowed and reacted to the GOD on beads. The hydrogen was generated by glucose-GOD reaction. And it was detected by the pH sensor.

  • PDF

Design of Class-E Power Amplifier for Wireless Energy Transfer (무선 에너지 전송을 위한 Class-E 전력증폭기 설계)

  • Ko, Seung-Ki;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.85-89
    • /
    • 2011
  • In this paper, a novel Class-E power amplifier using metamaterials has been realized with one RF LDMOS diffusion metal-oxide-semiconductor field effect transistor. The CRLH structure can lead to metamaterial transmission line with the Class-E power amplifier tuning capability. The CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Also, the proposed power amplifier has been realized by using the CRLH structure in the output matching network for better efficiency. Operating frequencies are chosen at 13.56 MHz in this work. The measured results show that the output power of 39.83 dBm and the gain of 11.83dB was obtained. At this point, we have obtained the power-added efficiency (PAE) of 73 % at operation frequency.

Design and Analysis of AlGaN/GaN MIS HEMTs with a Dual-metal-gate Structure

  • Jang, Young In;Lee, Sang Hyuk;Seo, Jae Hwa;Yoon, Young Jun;Kwon, Ra Hee;Cho, Min Su;Kim, Bo Gyeong;Yoo, Gwan Min;Lee, Jung-Hee;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.223-229
    • /
    • 2017
  • This paper analyzes the effect of a dual-metal-gate structure on the electrical characteristics of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors. These structures have two gate metals of different work function values (${\Phi}$), with the metal of higher ${\Phi}$ in the source-side gate, and the metal of lower ${\Phi}$ in the drain-side gate. As a result of the different ${\Phi}$ values of the gate metals in this structure, both the electric field and electron velocity in the channel become better distributed. For this reason, the transconductance, current collapse phenomenon, breakdown voltage, and radio frequency characteristics are improved. In this work, the devices were designed and analyzed using a 2D technology computer-aided design simulation tool.

High Performance p-type SnO thin-film Transistor with SiOx Gate Insulator Deposited by Low-Temperature PECVD Method

  • U, Myeonghun;Han, Young-Joon;Song, Sang-Hun;Cho, In-Tak;Lee, Jong-Ho;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.666-672
    • /
    • 2014
  • We have investigated the gate insulator effects on the electrical performance of p-type tin monoxide (SnO) thin-film transistors (TFTs). Various SnO TFTs are fabricated with different gate insulators of a thermal $SiO_2$, a plasma-enhanced chemical vapor deposition (PECVD) $SiO_x$, a $150^{\circ}C$-deposited PEVCD $SiO_x$, and a $300^{\circ}C$-deposited PECVD $SiO_x$. Among the devices, the one with the $150^{\circ}C$-deposited PEVCD $SiO_x$ exhibits the best electrical performance including a high field-effect mobility ($=4.86cm^2/Vs$), a small subthreshold swing (=0.7 V/decade), and a turn-on voltage around 0 (V). Based on the X-ray diffraction data and the localized-trap-states model, the reduced carrier concentration and the increased carrier mobility due to the small grain size of the SnO thin-film are considered as possible mechanisms, resulting in its high electrical performance.

A Review Study of Biosensors applicable to Wellness Wear (웰니스 의류에 적용 가능한 바이오센서 동향 연구)

  • Kim, Hyo-Jin
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.231-243
    • /
    • 2017
  • This paper provides a review of the electrical sensing biosensors and examine research cases of biosensors based on clothing and textiels. A biosensor which can measure bio-signals is a device that senses the physical and chemical characteristics of biological materials by using biological sensing materials. Therefore, wellness wear that is closely integrated with the user's real life will play an important role in achieving U-Health. The biosensors' unique feature which can be differentiated from the existing sensors is it's using of selective reactions and binding of biological substances. The electrical sensing biosensors are very small in size due to the processing of electrical signals, which can be used to create ubiquitous. Therefore, it is necessary to study electrical sensing biosensors that are easy to miniaturize to develop wellness wear. This paper describes the electrical sensing biosensor (an electrochemical method nanowire/carbon nanotube FET method) in detail. Finally, the future direction of biosensors to be applied to wellness wear is suggested.

4H-SiC MESFET Large Signal Modeling using Modified Materka Model (Modified Materka Model를 이용한 4H-SiC MESFET 대신호 모델링)

  • 이수웅;송남진;범진욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.890-898
    • /
    • 2001
  • 4H-SiC(silicon carbide) MESFET large signal model was studied using modified Materka-Kacprzak large signal MESFET model. 4H-SiC MESFET device simulation have been conducted by Silvaco\`s 2D device simulator, ATLAS. The result is modeled using modified Materka large signal model. simulation and modeling results are -8 V pinch off voltage, under V$\_$GS/=0 V, V$\_$DS/=25 V conditions, I$\_$DSS/=270 mA/mm, G$\_$m/=52.8 ms/mm were obtained. Through the power simulation 2 GHz, at the bias of V$\_$GS/-4 V md V$\_$DS/=25 V, 10 dB Gain, 34 dBm (1dB compression point)output porter, 7.6 W/mm power density, 37% PAE(power added efficiency) were obtained.7.6 W/mm power density, 37% PAE(power added efficiency) were obtained.d.

  • PDF