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Abstract—This paper analyzes the effect of a dual-
metal-gate structure on the electrical characteristics 
of AlGaN/GaN metal-insulator-semiconductor high 
electron mobility transistors. These structures have 
two gate metals of different work function values (ф), 
with the metal of higher ф in the source-side gate, and 
the metal of lower ф in the drain-side gate. As a result 
of the different ф values of the gate metals in this 
structure, both the electric field and electron velocity 
in the channel become better distributed. For this 
reason, the transconductance, current collapse 
phenomenon, breakdown voltage, and radio 
frequency characteristics are improved. In this work, 
the devices were designed and analyzed using a 2D 
technology computer-aided design simulation tool.    
 
Index Terms—AlGaN/GaN, Dual Metal Gate (DMG), 
metal-insulator-semiconductor (MIS), high electron 
mobility transistor (HEMTs), 2D technology 
computer-aided design (TCAD)   

I. INTRODUCTION 

Wide bandgap power devices for high-power and 
high-frequency applications have been the subject of 
much research, because of their usefulness in 

applications such as air conditioning, electric vehicles, 
national defense radars, and satellite communications. In 
fact, obtaining high critical electric fields and high on-
current levels has become an important issue in power 
electronics devices [1-4]. As a result, AlGaN/GaN 
heterostructure field-effect transistors (HFETs) have 
been recognized as promising candidates for high-power 
and high-frequency applications, because of their 
remarkable physical and material properties, such as 
wide bandgap, high electron velocity, and high carrier 
density of their two-dimensional electron gas (2-DEG). 
However, AlGaN/GaN HFETs with a Schottky-barrier 
gate suffer from dynamic power loss, because the large 
positive gate bias results in a large gate current. To 
reduce the gate leakage current, research on 
AlGaN/GaN-based metal-insulator-semiconductor (MIS) 
high electron mobility transistors (HEMTs) has been 
conducted. The gate leakage current of AlGaN/GaN MIS 
HEMTs has been successfully reduced by using gate 
insulation layer materials such as Al2O3, HfO2, SiO2, and 
Si3N4 [5-8]. 

To improve the breakdown voltage (BV), 
transconductance (gm), and current collapse phenomenon, 
much research has been conducted on how to effectively 
distribute the electric field [9-12] on these devices. One 
approach to achieve an adequate electric field 
distribution in the channel is the use of a dual-metal-gate 
(DMG) structure instead of a single-metal gate (SMG) 
structure [13-15]. In this work, AlGaN/GaN MIS 
HEMTs with a DMG structure will be used; the metal 
used for the source-side gate metal will have a higher 
work function (ф) than the metal used for the drain-side 
gate. These AlGaN/GaN MIS HEMTs with a DMG 
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structure will be analyzed in terms of gm, current collapse 
phenomenon, critical electric field, and radio frequency 
(RF) characteristics such as cut-off frequency (fT) and 
maximum oscillation frequency (fmax). The devices were 
designed and simulated using a Silvaco two-dimensional 
simulator [16]. 

II. DEVICE STRUCTURE AND SIMULATION 

STRATEGY 

Fig. 1(a) and (b) show the device schematics for 
AlGaN/GaN MIS HEMTs with SMG and DMG 
structures, respectively. The gate length (LG) is the sum 
of the Gate 1 and Gate 2 lengths (LG1 and LG2, 
respectively). Both LG1 and LG2 are fixed at 1 μm. Both 
the gate-to-drain spacing (LGD) and the length between 

gate and source (LGS) are 2 μm. 2-DEG exists at the 
interface between the AlGaN and GaN layers. The gate 
insulator is aluminum oxide (Al2O3) with a thickness 
(Tox) of 10 nm. The dielectric constant of Al2O3 is set as 
9.3. The thicknesses of the AlGaN layer (TAlGaN), GaN 
channel layer (HGaN), and high resistivity GaN layer 
(THR_GaN) are 20 nm, 70 nm, and 1.3 μm, respectively. 
The doping concentrations of the AlGaN and GaN 
channel layers are 1×1016 cm-3 and 1×1017 cm-3, 
respectively. The ф value of the Gate 1 metal (фG1) and 
Gate 2 metal (фG2) are the same in the SMG structure. In 
contrast, in the device with the DMG structure, фG1 is 
different from (higher than) фG2. 

In this work, a concentration dependent recombination 
model, low field mobility model, high field dependent 
mobility model, band parameter model, and polarization 
model were all used in the simulations, to ensure the 
accuracy of the obtained simulation results. 

III. SIMULATION RESULTS AND DISCUSSION 

Fig. 2 shows the drain current (IDS) versus gate voltage 
(VGS) and the gm versus VGS transfer curves of the 
designed AlGaN/GaN MIS HEMTs for both the SMG 
and DMG structure cases, when the drain voltage (VDS) is 
7 V. As shown in this figure, the gm of devices using a 
DMG structure is higher than that of devices with an 
SMG structure. The maximum values of gm of 
AlGaN/GaN MIS HEMTs with SMG and DMG 
structures were 103.48 mS/mm and 113.126 mS/mm, 
respectively. In other words, the maximum gm value of 
devices with the DMG structure was 9.3% higher than 

 

Fig. 2. ID-VGS and gm-VGS transfer curves of the AlGaN/GaN 
MIS HEMTs with SMG and DMG structures. 
 

 

(a) 
 

 

(b) 

Fig. 1. Device schematics of AlGaN/GaN MIS HEMTs with (a) 
SMG structure, (b) DMG structure. 
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that of devices using a SMG structure. The threshold 
voltage (Vth) of the AlGaN/GaN MIS HEMTs with the 
SMG structure was -3.2 V, for фG1 = фG2 = 4.1 eV. When 
both фG1 and фG2 were increased to 5.1 eV, Vth became -
2.2 V. The Vth of the DMG devices was -2.5 V. 

To confirm the reason underlying the gm improvement 
exhibited by the AlGaN/GaN MIS HEMTs with DMG 
structure, the electric field distribution and electron 
velocity in the channel were obtained. Fig. 3(a) and (b) 
show the electric field profile and electron velocity in the 
channel layer of the AlGaN/GaN MIS HEMTs with both 
SMG and DMG structures, when the bias is set for the 
maximum gm condition. As shown in Fig. 3(a), the 
devices using an SMG structure have a single electric 
field peak in the channel. In comparison, the 
AlGaN/GaN MIS HEMT devices using a DMG structure 
have two electric field peaks in the channel, because of 
the difference between фG1 and фG2. The source-side 
electric field of the DMG AlGaN/GaN MIS HEMT is 

higher than that of the SMG devices. Given that the 
electron velocity is proportional to the applied electric 
field, the electron velocity of the DMG AlGaN/GaN MIS 
HEMTs has also two peaks, as shown in Fig. 3(b). As a 
result, both the average velocity in the channel and gm 
increase in the DMG AlGaN/GaN MIS HEMTs. The 
DMG structure is also advantageous in terms of 
breakdown voltage.  

Fig. 4 shows the electric field of the AlGaN/GaN MIS 
HEMTs using both SMG and DMG structures, when VGS 
= -5 V and VDS = 100 V. The critical electric field of GaN 
is 3.5×106 V/cm. Devices with the SMG structure have a 
single electric field peak that reaches this critical electric 
field value. In comparison, devices with a DMG structure 
have two smaller electric peaks, thus exhibiting a better 
distribution of the electric field, which does not reach 
breakdown values. 

Fig. 5(a)-(c) show the ID-VDS characteristics of the 
AlGaN/GaN MIS HEMTs both before and after current 
collapse. In this work, the bias of off-state stress are VGS 
= -5 V and VDS = 25 V. In the SMG AlGaN/GaN MIS 
HEMTs, the average rates of change of ID (∆ID) are 22.66 
mA/mm and 22.55 mA/mm, respectively at фG1 = фG2 = 
5.1 eV and фG1 = фG2 = 4.1 eV. In the devices using the 
SMG structure, the average reduction ratio was 14.7%. In 
contrast, the average ∆ID and reduction ratio for the 
devices with the DMG structure were 7.05 mA/mm and 
3.8%, respectively. As a result of the better electric field 
distribution, the AlGaN/GaN MIS HEMTs using DMG 
structure exhibit lower electric field peak values than the 
devices with the SMG structure. These lower electric 
field peak values result in lower off-state stress; as a 

 

(a) 
 

 

(b) 

Fig. 3. (a) Electric field, (b) electron velocity in the channel of 
AlGaN/GaN MIS HEMTs, for both the SMG and DMG 
structures. 

 

 

Fig. 4. Electric field in the channel of AlGaN/GaN MIS 
HEMTs with the SMG structures and DMG structure at VGS = -
5 V and VDS = 100 V. 
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result, the current collapse phenomenon is suppressed 
when a DMG structure is used. 

Fig. 6(a) and (b) show the values of fT and fmax as 
functions of the gate voltage, respectively, for the 
AlGaN/GaN MIS HEMTs with both SMG and DMG 
structures. The values of fT and fmax were obtained from 
the high-frequency current gain (H21) and unilateral 

power gain (U), respectively. fT and fmax are defined as 
following equations. 

 

 m
T

gg

g
f

2πC
=                (1) 

 
T

max

g ds T gd

f
f

4R (g 2 f C )p
=

+        (2)  

 
The gm gets larger, fT and fmax get larger, as shown in 

these equations. Because the gm of AlGaN/GaN MIS 
HEMTs with the DMG structure is higher than that of 
devices with the SMG structure, the fT and fmax values of 
the DMG devices are also higher than those of the SMG 
devices. The obtained values for fT and fmax of the DMG 
devices were respectively 11.7% and 71% higher than 
those of the SMG devices. 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 5. ID-VDS transfer curves of the AlGaN/GaN MIS HEMTs 
with (a) SMG structure, at фG1 = фG2 = 5.1, (b) SMG structure, 
at фG1 = фG2 = 4.1, (c) DMG structure. 

 

 

(a) 
 

 

(b) 

Fig. 6. (a) Cut-off frequency (fT), (b) maximum oscillation 
frequency (fmax) of AlGaN/GaN MIS HEMTs with SMG 
structure of and DMG structure, as a function of VGS. 
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IV. CONCLUSIONS 

AlGaN/GaN MIS HEMTs using both SMG and DMG 
structures have been simulated and analyzed using the 
Silvaco 2-D technology computer-aided design simulator. 
Because the DMG structure consists of two gate metals 
with different work function values, the electric field in the 
channel of the devices with a DMG structure is better 
distributed. As a result, the devices using a DMG structure 
have the advantages of suppressing current collapse, 
increasing gm, and improving the BV and RF 
performances, when compared with devices with SMG 
structures. The simulation result is summarized in Table 1. 
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