• Title/Summary/Keyword: field crops

Search Result 912, Processing Time 0.027 seconds

Evaluating efficiency of automatic surface irrigation for soybean production

  • Jung, Ki-yuol;Lee, Sang-hun;Chun, Hyen-chung;Choi, Young-dae;Kang, Hang-won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.252-252
    • /
    • 2017
  • Nowadays water shortage is becoming one of the biggest problems in the Korea. Many different methods are developed for conservation of water. Soil water management has become the most indispensable factor for augmenting the crop productivity especially on soybean (Glycine max L.) because of their high susceptibility to both water stress and water logging at various growth stages. The farmers have been using irrigation techniques through manual control which farmers irrigate lands at regular intervals. Automatic irrigation systems are convenient, especially for those who need to travel. If automatic irrigation systems are installed and programmed properly, they can even save you money and help in water conservation. Automatic irrigation systems can be programmed to provide automatic irrigation to the plants which helps in saving money and water and to discharge more precise amounts of water in a targeted area, which promotes water conservation. The objective of this study was to determine the possible effect of automatic irrigation systems based on soil moisture on soybean growth. This experiment was conducted on an upland field with sandy loam soils in Department of Southern Area Crop, NICS, RDA. The study had three different irrigation methods; sprinkle irrigation (SI), surface drip irrigation (SDI) and fountain irrigation (FI). SI was installed at spacing of $7{\times}7m$ and $1.8m^3/hr$ as square for per irrigation plot, a lateral pipe of SDI was laid down to 1.2 m row spacing with $2.3L\;h^{-1}$ discharge rate, the distance between laterals was 20 cm spacing between drippers and FI was laid down in 3m interval as square for per irrigation plot. Soybean (Daewon) cultivar was sown in the June $20^{th}$, 2016, planted in 2 rows of apart in 1.2 m wide rows and distance between hills was 20 cm. All agronomic practices were done as the recommended cultivation. This automatic irrigation system had valves to turn irrigation on/off easily by automated controller, solenoids and moisture sensor which were set the reference level as available soil moisture levels of 30% at 10cm depth. The efficiency of applied irrigation was obtained by dividing the total water stored in the effective root zone to the applied irrigation water. Results showed that seasonal applied irrigation water amounts were $60.4ton\;10a^{-1}$ (SI), $47.3ton\;10a^{-1}$ (SDI) and $92.6 ton\;10a^{-1}$ (FI), respectively. The most significant advantage of SDI system was that water was supplied near the root zone of plants drip by drip. This system saved a large quantity of water by 27.5% and 95.6% compared to SI, FI system. The average soybean yield was significantly affected by different irrigation methods. The soybean yield by different irrigation methods were $309.7kg\;10a^{-1}$ from SDI $282.2kg\;10a^{-1}$ from SI, $289.4kg\;10a^{-1}$ from FI, and $206.3kg\;10a^{-1}$ from control, respectively. SDI resulted in increase of soybean yield by 50.1%, 7.0% 9.8% compared to non-irrigation (control), FI and SI, respectively. Therefore, the automatic irrigation system supplied water only when the soil moisture in the soil went below the reference. Due to the direct transfer of water to the roots water conservation took place and also helped to maintain the moisture to soil ratio at the root zone constant. Thus the system is efficient and compatible to changing environment. The automatic irrigation system provides with several benefits and can operate with less manpower. In conclusion, improving automatic irrigation system can contribute greatly to reducing production costs of crops and making the industry more competitive and sustainable.

  • PDF

Physical Properties of Organic Vegetable Cultivation Soils under Plastic Greenhouse (유기농 시설채소 재배지 토양의 물리적 특성변화)

  • Lee, Sang-Beom;Choi, Won-A;Hong, Seung-Gil;Park, Kwang-Lai;Lee, Cho-Rong;Kim, Seok-Cheol;An, Min-Sil
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.963-974
    • /
    • 2015
  • This study was conducted to determine the effects of organic vegetable cultivation on the soil physical properties in 33 farmlands under plastic greenhouse in Korea. We were investigated 5~8 farms per organic vegetable crops during the period from August to November 2014. The main cultivated vegetables were leafy lettuce (Lactuca sativa L.), Perilla leaves (Perilla frutescens var. Japonica Hara), cucumber (Cucumis sativus L.), strawberry (Fragaria ananassa L.) and tomato (Lycopersicon spp.). We have analyzed soil physical properties. The measured soil physical parameters were soil plough layer, soil hardness, penetration resistance, three soil phase, bulk density and Porosity. The measurement of the soil plough layer, soil hardness and penetration resistance were carried out direct in the fields, and the samples for other parameters were taken using the soil core method with approximately 20 mm diameter core collected from each organic vegetable field. Soil plough layer was average 36 cm and ranged between 30 and 50 cm, and slightly different depending on the sorts of vegetable cultivation. The soil hardness was $0.17{\pm}0.15{\sim}1.34{\pm}1.02$ in the topsoil, $0.55{\pm}0.34{\sim}1.15{\pm}0.62$ in the subsoil. It was not different between topsoil and subsoil, but showed a statistically significant difference between the leafy and fruit vegetables. Penetrometer resistance is one of the important soil physical properties that can determine both root elongation and yield. The increase in density under leafy vegetables resulted in a higher soil penetrometer resistance. Soil is a three-component system comprised of solid, liquid, and gas phases distributed in a complex geometry that creates large solidliquid, liquid-gas, and gas-solid interfacial areas. The three soil phases were dynamic and typically changed in organic vegetable soils under greenhouse. Porosity was characterized as range of $54.2{\pm}2.2{\sim}60.3{\pm}2.4%$. Most measured soils have bulk densities between 1.0 and $1.6gcm^{-3}$. To summarize the above results, Soil plough layer has been deepened in organic vegetable cultivation soils. Solid hardness (the hardness of the soil) and bulk density (suitable for the soil unit mass) have been lowered. Porosity (soil spatial content) was high such as a well known in organic farmlands. Important changes were observed in the physical properties according to the different vegetable cultivation. We have demonstrated that the physical properties of organic cultivated soils under plastic greenhouse were improved in the results of this study.

Development and Application of the SWAT HRU Mapping Module for Estimation of Groundwater Pollutant Loads for Each HRU in the SWAT Model (SWAT HRU별 지하수 오염부하량 산정을 위한 SWAT HRU Mapping Module 개발 및 적용)

  • Ryu, Ji Chul;Mun, Yuri;Moon, Jongpil;Kim, Ik Jae;Ok, Yong Sik;Jang, Won Seok;Kang, Hyunwoo;Lim, Kyoung Jae
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.49-70
    • /
    • 2011
  • The numerous efforts have been made in understanding generation and transportation mechanism of nonpoint source pollutants from agricultural areas. Also, the water quality degradation has been exacerbated over the years in many parts of Korea as well as other countries. Nonpoint source pollutants are transported into waterbodies with direct runoff and baseflow. It has been generally thought that groundwater quality is not that severe compared with surface water quality. However its impacts on groundwater in the vicinity of stream quality is not negligible in agricultural areas. The SWAT model has been widely used in hydrology and water quality studies worldwide because of its flexibilities and accuracies. The spatial property of each HRU, which is the basic computational element, is not presented. Thus, the SWAT HRU mapping module was developed in this study and was applied to the study watershed to evaluate recharge rate and $NO_3-N$ loads in groundwater. The $NO_3-N$ loads in groundwater on agricultural fields were higher than on forests because of commercial fertilizers and manure applied in agricultural fields. The $NO_3-N$ loads were different among various crops because of differences in crop nutrient uptake, amount of fertilizer applied, soil properties in the field. As shown in this study, the SWAT HRU mapping module can be efficiently used to evaluate the pollutant contribution via baseflow in agricultural watershed.

  • PDF

The Effect on Participating in the Urban Farming in the Farm Village Experience Tourism of Urbanite (도시민의 도시농업 경험이 농촌체험관광에 미치는 영향)

  • Lee, In-Hwan;Lee, Hyo-Jeong;Lee, Seul-Bi;Jeon, In-Cheol;Kim, Yong-Geun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.79-88
    • /
    • 2012
  • The purpose of this study were to classify the Y/N in participating the urban farming and to analyze the intention in farm village experience tourism, reason to participate and non-participation, the positive image and negative image between the urbanite group experience in urban farming and the other group that does not experience it. Questionnaire was implemented to the metropolitan urbanite who visited exemplary field farmhouse and urban recreation space to analyze the comparison of groups that experience or do not experience urban farming. The result of this research is as follows: first, experiencing urban farming are relatively less in willingness to participate in the farm village tourism experience than those who do not experience it. Second, the largest reason to participate in farm village tourism experience is found to be the natural environment of farm village tourism experience that is different from that of the city and the effect on children's education. Third, most answers on the reason for not participating in farm village tourism experience is because of the busy daily life. Fourth, urbanite have positive image in general about farm village tourism experience. Especially, when the comparison between the groups was made, it was showed that the difference in understanding the crops growing and the natural environment difference in the city. Fifth, about the negative image on the farm village tourism experience, it showed the difference in understanding the unfamiliar scenery, shortage of eye catching and fun, and the necessity and cost between the groups. Consequently, this study may be significant in the recognition of the farm village tourism experience on urbanite were checked, it was revealed that Y/N experience in the urban farming made negative influence to the willing.

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image (초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.845-859
    • /
    • 2020
  • Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.

Effect of the Anthracnose Resistant Transgenic Chili Pepper on the Arthropod Communities in a Confined Field (야외 격리 포장에서 유전자 변형 탄저병 저항성 PepEST 고추가 절지동물 군집에 미치는 영향)

  • Yi, Hoon-Bok;Kwon, Min-Chul;Park, Ji-Eun;Kim, Chang-Gi;Park, Kee-Woong;Lee, Bum-Kyu;Kim, Hwan-Mook
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.4
    • /
    • pp.326-335
    • /
    • 2007
  • This study was conducted to assess the environmental risks of anthracnose resistant transgenic chili peppers with the PepEST gene on non-target organisms in the agroecosystem environments during the chili pepper growing seasons in 2006. We quantitatively collected arthropods assemblages living on leaves and flowers of chili peppers on June 20, July 25, and August 25 by using an insect vacuum collector to compare the patterns of arthropod community structures between non-transgenic chili peppers (nTR, WT512) and anthracnose resistant transgenic chili peppers (TR, line 68). We found the seasonal difference with the highest species richness and Shannon's diversity in July's sampling among the growing seasons (P<0.05) and each sampling season showed the different arthropod community composition. We also found there was no statistical difference between the two types of crops, nTR and TR, at each sampling time (P>0.05). The significance level of arthropod community showed that there were lots of seasonal difference of functional groups as well as taxa but only the herbivore group in the functional groups was significantly different for the types of plants (P<0.05). So, we further examined the herbivore groups to find any potential damage and identified the possibility of herbivorous damage from some herbivores, grasshoppers, aphids and thrips. Although we couldn't find any adverse effects from the environmental risk assessment between the arthropod community structures on two types of plants from our results, we should keep working for the environmental risk assessment because of the herbivorous potential risk possibility.

Comparison of Growth Characteristics and Productivities of Hairy Vetch (Vicia villosa) Varieties (헤어리 베치의 품종별 생육 특성과 생산성 비교)

  • Lee, Joung-Kyong;Lim, Keun-Bal;Kim, Ki-Yong;Choi, Gi-Jun;Seong, Byung-Ryul;Seo, Sung;Ji, Hee-Chung;Choi, Yeon-Sik;Shin, Jeong-Nam;Park, Hyung-Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.4
    • /
    • pp.249-256
    • /
    • 2007
  • This experiment was conducted to compare the agronomic characteristics and productivity in introduced hairy vetch cultivars and developed new Korean Hairy vetch cultivars in two areas of the experimental field of Grassland and Forage Crops Division, National Institute of Animal Science from 2005 to 2006. The experiment was arranged in randomized complete block design with three replications. A total of 11 hairy vetch cultivars used in this study including 9 introduced cultivars (Penn-02, Sander, Latigo, Welta, Ostsaat, VV4712, Minnie, Barlosa and Capello) and 2 Korean cultivars (Cold green and Cheong pa). The early flowering varieties of Minnie, Barlosa, Capello and Cold green were grown as early maturity cultivars, while the late flowering varieties of Penn-02, Sander, Latigo, Welta, Ostsaat, VV4712 and Cheong pa were grown as medium and late maturity. The winter hardiness of hairy vetch was good except for Minnie, Barlosa and Capello of early maturity cultivars. In this study, dry matter yield of VV4712 was the highest of 11 hairy vetch cultivars. And dry matter yield of medium and late maturity vetch increased in the middle region while that of early maturity increased in the south. The new Korean cultivar, Cheong pa, as a medium and late maturity hairy vetch was not bad compared to introduced cultivars and Cold green as an early maturity hairy vetch was an excellent cultivar compared to introduced cultivars in both regions. Latigo in NDF (neutral detergent fiber) and Welta in ADF (acid detergent fiber) were lower than other cultivars, while Sander in IVDMD (in vitro dry matter digestibility) and CP (crude protein) content were higher than other cultivars. The results of this experiment indicated that the productivity of hairy vetch cultivars was highest in VV4712, and Cheong pa and Cold green of new Korean cultivar were the promising cultivars of hairy vetch in Korea.

Environmental factors Associated with Disease Development of Garlic White Rot Caused by Two Species of Sclerotium (온도와 토양습도가 마늘 흑색썩음균핵병 발생에 미치는 영향)

  • Kim Yong-Ki;Kwon Mi-Kyung;Shim Hong-Sik;Kim Tack-Soo;Yeh Wan-Hae;Cho Weon-Dae;Choi In-Hu;Lee Seong-Chan;Ko Sug-Ju;Lee Yong-Hwan;Lee Chan-Jung
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.128-134
    • /
    • 2005
  • This study was conducted to elucidate effect of environmental factors on the development of white rot. In order to identify the causal agents causing white rot of Allium crops, we compared DNA profiles of a representative isolate, Sclerotium cepivorum, introduced from foreign country with Korean isolates using UP-PCR. As a result, Sclerotium isolates forming round-shaped sclerotia were identified as Sclerotium cepivorum pertaining in UP-PCR b group and Sclerotium isolates farming anamorphic-shaped sclerotia presumed to be a novel species of Sclerotium based on DNA profiles of UP-PCR. There was a big difference in DNA band pattern between two species of Sclerotium isolated in Korea. Electron micrographs of scanning electron microscope and transmission electron microscope showed morphological differences in sclerotial surface structure and rind layers between two species of Sclerotium. There were more wrinkles and pore spaces on sclerotial surface of Sclerotium sp. forming anamorphic-shaped sclerotia than that of Sclerotium cepivorum forming round-shaped sclerotia. Both of two white rot pathogens grew well at the temperature range of $10-25^{\circ}C$ with optimal temperature of $20^{\circ}C$. Sclerotia of the two pathogens were well formed at $20^{\circ}C$ and well germinated at the temperature range of $20-24^{\circ}C$, Effect of pre-incubation of sclerotia on destruction of sclerotial dormancy of two pathogens was evaluated through storing sclerotia under different temperature condition. The sclerotia of the two pathogens showed an increased capacity to germinate on potato dextroise agar when the sclerotia were incubated for 7 days at $10^{\circ}C$ after pre-treatment at $35^{\circ}C$ for 7 days. At that time, germination rate of Sclerotium sp. and 5. cepivorum was $100\%\;and\;70\%$, respectively. Flooding period and treatment temperature had an effect on sclerotial survival rate of the two pathogens. As flooding period and treatment temperature increased, sclerotial germination rate of the two pathogens decreased. It was confirmed that soil humidity played an important role on development of white rot. It was the highest disease incidence of garlic white rot when garlic were sown at potted soils infested with the two pathogens and adjusted soil humidity to $15\%$ (field moisture capacity, about -300 mb). As soil humidity increase or decrease based on $15\%$ of soil humidity, disease incidence decreased move and more.

Availability of Hairy Vetch as Leguminous Cover Crops in Citrus Orchards of Volcanic Ash Soils (화산회토 감귤원에서 헤어리베치의 이용 가능성)

  • Kim, Yu-Kyoung;Cho, Young-Yuen;Kang, Ho-Jun;Kim, Jeong-Sun;Choa, Chang-Suk;Song, Kwan-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.357-371
    • /
    • 2017
  • In this study we evaluated the availability of hairy vetch in citrus (Citrus unshiu Marc.) orchards of volcanic ash soils. The responses to increasing seeding rates and various growing conditions such as altitude, accumulated temperature, and soil chemical properties etc, were analyzed by means of the seedling establishment rate, weed occurrence ratio, and shoot biomass yield of hairy vetch. Field experiments were conducted at five citrus orchards by altitude from Sep. 2015 to Apr. 2016 in Jeju Island, Republic of Korea. Hairy vetch used in the study was 'Cheongpyungbora', developed by National Institute of Crop Science. Seeding rates of hairy vetch consisted of 30, 60 and $90kg{\cdot}ha^{-1}$. Results showed that the seedling establishment rates of hairy vetch were quite similar regardless of seeding rates in all fields and weed occurrence ratio at 30, 60 and $90kg{\cdot}ha^{-1}$ of seeding rates were 11.8, 3.8, and 5.1% (dry wt.), respectively. Both 60 and $90kg{\cdot}ha^{-1}$ of seeding rates, the weed occurrences were decreased by 96.2% and 94.9%. The nitrogen production of hairy vetch at 30, 60 and $90kg{\cdot}ha^{-1}$ of seeding rates were 254, 316, and $315kg{\cdot}ha^{-1}$, respectively. Both 60 and $90kg{\cdot}ha^{-1}$ of seeding rates, The nitrogen production were increased by 24%, compared to $30kg{\cdot}ha^{-1}$ of seeding rate. In these results we were considered that the cost-efficient seeding rate of vetch was $60kg{\cdot}ha^{-1}$ in citrus orchards. Also, this study showed that the shoot biomass of hairy vetch and various cultivative factors were related and The nitrogen production of hairy vetch had a little bit of positive correlation (R=0.2714) with accumulated temperature and considerable correlations with some items (EC ($R=0.4520^{**}$) and exchangeable K ($R=0.4078^{**}$)) of soil chemical properties. Therefore, we were considered that hairy vetch can be used as a leguminous cover crop in citrus orchards, the calculation formula (Y=4.4097X + 33.594 (R=0.9547)) can be suggested for nitrogen yield of hairy vetch by using the shoot fresh weight (X).

Growth Characteristics and Ginsenoside Contents of 4 Years Old Korean Ginseng (Panax ginseng C.A. Meyer) by Shade Materials and Green Manure Crops (해가림자재 종류와 녹비작물 재배에 따른 4년생 인삼의 생육과 진세노사이드 함량)

  • Seong, Bong-Jae;Kim, Sun-Ick;Lee, Ka-Soon;Kim, Hyun-Ho;Won, Jun-Yeon;So, Jung D.;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.4
    • /
    • pp.504-509
    • /
    • 2015
  • This research carried out to figure out the effect of the green manure crop cultivated at a preparation field and the shading net on the growth, development, and quality of ginseng. Followings are results obtained from the research. Leaf width of ginseng under the shading net of a two-layered blue and two-layered black polythylene net (TBTBPN) was good at rye and hairy vetch cultured group. Leaf length of ginseng under the shading net of a three-layered blue and one-layered black polyethylene net (TBOBPN) was good at barley and hairy vetch cultured group. Meanwhile, leaf width was good at hairy vetch cultured group. Leaf length of ginseng under a blue polyethylene sheet (BPS) was good at a barley and barley + hairy vetch cultured group, but stem length was shorter compare to other shading net cultivations. Root weight of ginseng was good under the shading net of a two-layered blue and two-layered black polyethylene net (TBTBPN) at a rye and hairy vetch cultured group, and was good under the shading net of a three-layered blue and onelayered black polyethylene net (TBOBPN) at a barley + hairy vetch cultured group, but there was no significant difference under blackout screen according to manure crop varieties. Ratio of rusty root was 10.2% at the barley cultured group under the shading net of a two-layered blue and two-layered black polyethylene net (TBTBPN), and was 23.1% at hairy vetch cultured group under shading net of a three-layered blue and one-layered black polyethylene net (TBOBPN). Ratio of rusty root was the lowest at a rye cultured group regardless the shading nets. Content of the ginsenoside was the highest at the rye cultured group under the shading net of two-layered blue and two-layered black polyethylene net (TBTBPN), was the highest at the barley cultured group under the shading net of a three-layered blue and one-layered black polyethylene net (TBOBPN), and was the highest at the rye cultured group under the blackout screen.