• Title/Summary/Keyword: field applications

Search Result 3,711, Processing Time 0.039 seconds

Graphene field-effect transistor for radio-frequency applications : review

  • Moon, Jeong-Sun
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • Currently, graphene is a topic of very active research in fields from science to potential applications. For various radio-frequency (RF) circuit applications including low-noise amplifiers, the unique ambipolar nature of graphene field-effect transistors can be utilized for high-performance frequency multipliers, mixers and high-speed radiometers. Potential integration of graphene on Silicon substrates with complementary metal-oxide-semiconductor compatibility would also benefit future RF systems. The future success of the RF circuit applications depends on vertical and lateral scaling of graphene metal-oxide-semiconductor field-effect transistors to minimize parasitics and improve gate modulation efficiency in the channel. In this paper, we highlight recent progress in graphene materials, devices, and circuits for RF applications. For passive RF applications, we show its transparent electromagnetic shielding in Ku-band and transparent antenna, where its success depends on quality of materials. We also attempt to discuss future applications and challenges of graphene.

Scientific and Engineering Applications of Full-field Swept-source Optical Coherence Tomography

  • Mehta, Dalip Singh;Anna, Tulsi;Shakher, Chandra
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.341-348
    • /
    • 2009
  • We report the development of full-field swept-source optical coherence tomography (SS-OCT) in the wavelength range of 815-870 nm using a unique combination of super-luminescent diode (SLD) as broad-band light source and acousto-optic tunable filter (AOTF) as a frequency-scanning device. Some new applications of full-field SS-OCT in forensic sciences and engineering materials have been demonstrated. Results of simultaneous topography and tomography of latent fingerprints, silicon microelectronic circuits and composite materials are presented. The main advantages of the present system are completely non-mechanical scanning, wide-field, compact and low-cost.

High Field Superconducting Magnet Optimal Design for Nuclear Magnetic Resonance (NMR) Applications (핵자기공명(NMR) 응용을 위한 고자장 초전도 마그네트의 최적화 설계)

  • 고락길;조영식;권영길;진홍범;배준한;심기덕;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.150-153
    • /
    • 2000
  • NMR researches are required high field and high homogeneous super-conducting magnet. Thus superconducting magnets for NMR applications are designed with minimization of coil winding volume satisfied constraints such as field strength, field homogeneity, etc. In this paper, we are discussed optimal design of high field super-conducting magnet for NMR applications. For a design example, we designed unshielded superconducting magnet for 600MHz NMR spectrometer with 100mm room temperature bore size and obtained 14.1011[T] field strength and 1.33 ppm field homogeneity.

  • PDF

Koh Chang Island Eco-Tourism Mapping by Balloon-born Remote Sensing Imagery System

  • Kusanagi, Michiro;Nogami, Jun;Choomnoommanee, Tanapati;Laosuwan, Teerawong;Penaflor, Eileen;Shulian, Niu;Zuyan, Yao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.894-896
    • /
    • 2003
  • Koh Chang Island is located near the east border of Thailand. The government of Thailand promotes the island as a model of eco-tourism spots. The Island undeveloped until recent years, is expected to change to major tourist attraction. 'Digital Koh Chang project' has thus. The main objective of this project is to monitor the environment and land use status of the island and to support its sound development. In March 2003, a field survey of this project was planned and field data were collected using both airborne and ground platforms and an ocean vessel. These data were combined with satellite data in the laboratory. This presentation is all balloon-born system field operation. A 5-meter length balloon filled with Helium gas was used, whose payload consisted of two RGB standard color digital still cameras, two directional rotating servo motors, a camera mount cradle as well as signal transmitting and receiving components. A series of aerial high-resolution digital images were rather easily obtained using this inexpensive system, making it possible to monitor intended landscape features in a specific field. Design of simple, low-cost and easily transportable flying platforms and local field surveys using them are useful for getting local ground truth data to calibrate satellite or airborne-based RS data. The design analysis to upgrade the system is further investigated.

  • PDF

Sound manipulation: Theory and Applications (음장 제어의 이론과 그 적용)

  • Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.468-471
    • /
    • 2008
  • Sound manipulation is to control sound field using multiple sound sources for appropriate purposes. In linear acoustics, a sound can be constructed by superimposing several fundamental sound fields such as a planewave and sphere shape sound field. That is how we manipulate sound field. In this paper, we introduce the theory of sound manipulation and its applications from the examples of the generation of fundamental sound field: a circle, a ring shape sound field and a planewave field.

  • PDF

MODELING OF A REPULSIVE TYPE MAGNETIC BEARING FOR FIVE AXIS CONTROL INCLUDING EDDY CURRENT EFFECT

  • Ohji, T.;Mukhopadhyay, S.C.;Iwahara, M.;Yamada, S.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.625-629
    • /
    • 1998
  • So far a single-axis controlled repulsive type magnetic bearing system have been designed and fabricated in our laboratory employing the repulsive forces operating between the stator and rotor permanent magnet for levitation. The radial axis is uncontrolled passive one. The higher speed of operation is limited due to the vibration along the uncontrolled axis and the increase of control current due to eddy current interference. This paper will discuss a detailed modeling of the repulsive type magnetic bearing system for five axis control including the eddy current effect and the method of reduction of eddy current effect. Simulation results using Matlab will be presented.

  • PDF

Electroactive Polymer Composites as a Tactile Sensor for Biomedical Applications

  • Kim GeunHyung
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.564-572
    • /
    • 2004
  • Modem applications could benefit from multifunctional materials having anisotropic optical, electrical, thermal, or mechanical properties, especially when coupled with locally controlled distribution of the directional response. Such materials are difficult to engineer by conventional methods, but the electric field-aided technology presented herein is able to locally tailor electroactive composites. Applying an electric field to a polymer in its liquid state allows the orientation of chain- or fiber-like inclusions or phases from what was originally an isotropic material. Such composites can be formed from liquid solutions, melts, or mixtures of pre-polymers and cross-linking agents. Upon curing, a 'created composite' results; it consists of these 'pseudofibers' embedded in a matrix. One can also create oriented composites from embedded spheres, flakes, or fiber-like shapes in a liquid plastic. Orientation of the externally applied electric field defines the orientation of the field-aided self-assembled composites. The strength and duration of exposure of the electric field control the degree of anisotropy created. Results of electromechanical testing of these modified materials, which are relevant to sensing and actuation applications, are presented. The materials' micro/nanostructures were analyzed using microscopy and X-ray diffraction techniques.

Phytoremediation and Bioremediation of Land Contaminated by Hydrocarbons: Modeling and Field Applications

  • Sung, Kijune;Corapcioglu, M.Yavuz
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.18-21
    • /
    • 2002
  • Phytoremediation which uses plants to enhance the bioremediation through stimulation of microbial activity and root uptake, has been a topic of increasing interest. Mathematical model were developed that can be applied to various bioremediation methods in the unsaturated zone, especially phytoremediation, for simulating the fate and transport of contaminants under field conditions. A 2-year field study was conducted using 72 (1.5m long and 0.1 m diameter) column lysimeters with four treatments: Johnsongrass; wild rye grass; a rotation of Johnsongrass and wild rye grass; and unplanted fallow conditions. The developed model represented the fate and transport of contaminant both in vegetated and unplanted soils satisfactorily for field applications. Parameters related to the contaminant concentration in the water phase were the main parameters determining the contaminant fate in the vadose zone and indicated that the bioavailability can be the most important factor in the success of phytoremediation as well as bioremediation applications.

  • PDF

Pt nanoparticles-coated Carbon nanofiber for FED application

  • Lee, Won-Woo;Choi, Young-Min;Ryu, Beyong-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1590-1592
    • /
    • 2007
  • In this study, we prepared CNF (carbon nanofiber) by the solvothermal method for FED (field emission display) applications. We controlled several conditions to synthesize effective CNF for field emission applications. Nano-sizesd Pt nanoparticles were coated on the CNF. In this study, we have applied Pt nanoparticles- coated CNF which can be produced in mass, to field emission application.

  • PDF

Relativity of Electric Field to Resonance Characteristics and Piezoelectric Constants of Modified PZT Ceramics

  • Oh, Jin-Heon;Lim, Jong-Nam;Lee, Seung-Su;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.196-199
    • /
    • 2009
  • The practical applications of piezoelectric ceramics are applied not only under low electric field environment. Therefore, an examination for characteristics of PZT ceramics under the high electric field condition can contribute to reducing the susceptibility of multifarious applications and to facilitating production of control circuits. These contributions can lead to the expansion of industrial applications. In this research, we fabricated disk-type PZT ceramic samples using conventional methods, measured the resonance characteristics of these samples under from low to high voltage conditions and calculated the PZT constants.