• Title/Summary/Keyword: fibrinolytic protease

Search Result 89, Processing Time 0.021 seconds

Cloning of Fibrinolytic Enzyme Gene from Bacillus subtilis Isolated from Cheonggukjang and Its Expression in Protease-deficient Bacillus subtilis Strains

  • Jeong, Seon-Ju;Kwon, Gun-Hee;Chun, Ji-Yeon;Kim, Jong-Sang;Park, Cheon-Seok;Kwon, Dae-Young;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1018-1023
    • /
    • 2007
  • Bacillus subtilis CH3-5 was isolated from cheonggukjang prepared according to traditional methods. CH3-5 secreted at least four different fibrinolytic proteases (63, 47, 29, and 20 kDa) into the culture medium. A fibrinolytic enzyme gene, aprE2, encoding a 29kDa enzyme was cloned from the genomic DNA of CH3-5, and the DNA sequence determined. aprE2 was overexpressed in heterologous B. subtilis strains deficient in extracellular proteases using a E. coli-Bacillus shuttle vector. A 29 kDa AprE2 band was observed and AprE2 seemed to exhibit higher activities towards fibrin rather than casein.

Purification and Characterization of the Fibrinolytic Enzyme Produced by Bacillus subtilis KCK-7 from Chungkookjang

  • Paik, Hyun-Dong;Lee, Si-Kyung;Heo, Seok;Kim, Soo-Young;Lee, Hyung-Hoan;Kwon, Tae-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.829-835
    • /
    • 2004
  • A fibrinolytic enzyme has been found in several bacteria isolated from fermented food. This study was carried out to investigate the purification and characteristics of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 originated from Chungkookjang. The fibrinolytic enzyme was purified to homogeneity from the culture supernatant using ammonium sulfate fractionation and chromatographies on DEAE-cellulose and on Sephadex G-100. The final specific activity of the purified enzyme increased 11.0-fold, and the protein amount in the purified enzyme was about 16% of that in the culture supernatant. The molecular weight of the purified enzyme was estimated to be about 45,000 by SDS-PAGE. The optimum pH and temperature for the enzyme activity were pH 7.0 and $60^{\circ}C$, respectively. The enzyme activity was relatively stable up to $60^{\circ}C$ over the pH range of 7.0-10.0. The fibrinolytic enzyme activity increased by $Ca^{2+}$ and $Cu^{2+}$, whereas it was inhibited by $Hg^{2+}$ and $Ba^{2+}$. In addition, it was severely inhibited by PMSF and DFT. It is suggested that the purified enzyme was a serine protease for the fibrinolysis. The purified enzyme could completely hydrolyze fibrin in vitro within 8 h. Hence, it is suggested that the purified enzyme can be put into practice as an effective thrombolytic agent.

Biochemical Characterization of Serine Proteases with Fibrinolytic Activity from Tenodera sinensis (Praying Mantis)

  • Kim, Yeong-Shik;Hahn, Bum-Soo;Cho, So-Yean;Chang, Il-Moo
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.97-104
    • /
    • 2001
  • Three types of proteases (MEF-1, MEF-2 and MEF-3) were purified from the egg cases of Ten-odera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60 and affinity chromatography on DEAE Affi-Gel blue gel. The proteases were assessed homogeneous by SDS-polyacrylamide gel electrophoresis and have molecular weight of 31,500, 32,900 and 35,600 Da, respectively. The N-terminal regions of the primary structure were compared and they were found to be different each other. MEFs readily digested the $A\alpha$ - and B$\beta$-chains of fibrinogen and more slowly the ${\gamma}$-chain. The action of the enzymes resulted in extensive hydrolysis of fibrinogen and fibrin, releasing a variety of fibrinopeptides. MEF-1 was inactivated by Cu$^{2+}$ and Zn$^{2+}$ and inhibited by PMSF and chymostatin. MEF-2 was inhibited by PMSF, TLCK. soybean trypsin inhibitor. MEF-3 was only inhibited by PMSF and chymostatin. Antiplasmin was not sensitive to MEF-1 but antithrombin III inhibited the enzymatic activity qf MEF-1. MEF-2 specifically bound to anti plasmin Among the chromogenic protease substrates, the most sensitive one to the hydrolysis of MEFs was benzoyl-Phe-Val-Arg-p-nitroanilide with maximal activity at pH 7.0 and 3$0^{\circ}C$. MEF-1 preferentially cleaved the oxidized B-chain of insulin between Leu15 and Tyr16. In contrast, MEF-2 specifically cleaved the peptide bond between Arg23 and Gly24. D-dimer concentrations increased on incubation of cross-linked fibrin with MEF-1, indicating the enzyme has a strong fibrinolytic activity.ity.

  • PDF

Optimal Production and Characterization of Fibrinolytic Enzyme from Fomitella fraxinea Mycelia. (Fomitella fraxinea 균사체로부터 Fibrin분해효소의 최적생산 및 효소적 특성)

  • 이종석;백형석;박상신
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.325-331
    • /
    • 2002
  • investigated to maximize the production of fibrinolytic enzyme from Fomitella fraxinea mycelia. Among the tested media, Coriolus versicolor medium (CVM) showed the highest production for the enzyme. 2% galactose, 0.6% yeast extract and 0.1% $NaNO_3$, 0.1% $K_2HPO_4$, and 0.05% $MgSO_4$.$7H_2O$ as carbon, nitrogen, phosphorus, and inorganic salt sources resulted in the maximum level of the enzyme activity, respectively. The enzyme production from F. fraxinea was reached to highest level after the cultivation for 10 days at $25^{\circ}C$ and pH 9. The enzyme activity of culture supernatant was most active at $40^{\circ}C$ and pH 10. The activity of the enzyme was inhibited by phenylmethylsulfonylfluoride and aprotinin, suggesting that it is a serine protease.

Properties of Cheonggukjang Fermented with Bacillus Strains with High Fibrinolytic Activities

  • Jeong, Woo-Ju;Lee, Ae-Ran;Chun, Ji-Yeon;Cha, Jae-Ho;Song, Young-Sun;Kim, Jeong-Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.3
    • /
    • pp.252-259
    • /
    • 2009
  • We previously isolated Bacillus strains with high fibrinolytic activities (FAs) from cheonggukjang prepared by traditional ways. To test their potential as starters for cheonggukjang, soybean was fermented for 72 hr at $37^{\circ}C$ with each isolate and a control lab strain: B. subtilis CH3-25 (BS3-25), B. amyloliquefaciens CH51 (BA51), B. amyloliquefaciens CH86-1 (BA86-1), and B. subtilis 168 (BS168, control, lab strain). Viable cell numbers of all cheonggukjang samples rapidly increased and reached about $10^9$ CFU/g after 6 hr. During 72 hr, the initial pH of 6.3 rapidly increased to 8.1$\sim$8.2 for cheonggukjang fermented with BS3-25 or BA86-1, and 7.3 for those with BA51 or BS168. FAs and protease activities (acid, neutral, and alkaline) rapidly increased in cheonggukjang fermented with BS3-25, BA51, or BA86-1 during the first 12 hr. On the other hand, those of cheonggukjang fermented with BS168 slightly increased during the first 36 hr. There were significant changes in acid and neutral protease activities in cheonggukjang fermented with BA51 or BA86-1 during the 24 hr. Rapid increases of $\beta$-glucosidase activity corresponded well with rapid increases of $\alpha$-amylase and $\alpha$-galactosidase activities in addition to increases in antioxidant activities and the TPCs (total phenolic contents). The highest increase in the TPCs was observed in cheonggukjang fermented with BA86-1 while the least was that fermented with BS168.

Purification and Characterization of a New Peptidase, Bacillopeptidase DJ-2, Having Fibrinolytic Activity: Produced by Bacillus sp. DJ-2 from Doen-Jang

  • CHOI, NACK-SHICK;YOO, KI-HYUN;HAHM, JEUNG-HO;YOON, KAB-SEOG;CHANG, KYU-TAE;HYUN, BYUNG-HWA;PIL, JAE-MAENG;KIM, SEUNG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.72-79
    • /
    • 2005
  • A new Bacillus peptidase, bacillopeptidase DJ-2 (bpDJ-2), with molecular mass of 42 kDa and isoelectric point (pI) of 3.5- 3.7, was purified to homogeneity from Bacillus sp. DJ-2 isolated from Doen-Jang, a traditional Korean soybean fermented food. The enzyme was identified as an extracellular serine fibrinolytic protease. The optimal conditions for the reaction were pH 9.0 and $60^{\circ}C$. The first 18 amino acid residues of the N-terminal amino acid sequence of bpDJ-2 were TDGVEWNVDQIDAPKAW, which is identical to that of bacillopeptidase F (bpf). However, based on their Nterminal amino acid sequence, molecular size, and pI, it is different from that of bpf and extracellular 90 kDa. The whole (2,541 bp, full-bpDJ-2) and mature (1,956 bp, mature-bpDJ-2) genes were cloned, and its nucleotide sequence and deduced amino acid sequence were determined. The expressed proteins, full-bpDJ-2 and mature-bpDJ-2, were detected on SDSPAGE at expected sizes of 92 and 68 kDa, respectively.

Purification and Characterization of a Fibrinolytic Enzyme Produced by Bacillus amyloliquefaciens HC188 (Bacillus amyloliquefaciens HC188이 생산하는 혈전분해 효소의 정제 및 특성)

  • Shin, So Hee;Hong, Sung Wook;Chung, Kun Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.33-43
    • /
    • 2013
  • A bacterium producing a fibrinolytic enzyme was isolated from Cheonggukjang. The bacterium was identified as a strain of Bacillus amyloliquefaciens by 16S rDNA analysis and designated as B. amyloliquefaciens HC188. The optimum culture medium appeared to be one containing 0.5% (w/v) maltose and 0.5% (w/v) soytone. Bacterial growth in the optimal medium at $37^{\circ}C$ reached the stationary phase after 27 h of incubation and the fibrinolytic enzyme showed optimum activity at 24 h. The enzyme was purified by 20-80% ammonium sulfate precipitation, CM Sepharose fast flow ion exchange chromatography, and Sephacryl S-200HR column chromatography. Its specific activity was 38359.3 units/mg protein and the yield was 5.5% of the total activity of the crude extracts. The molecular weight was 24.7 kDa and the amino acids of the N-terminal sequence were AQSVPYGVSQIKAPA. The fibrinolytic enzyme activity had an optimum temperature of $40^{\circ}C$ and an optimum pH of 8.0, and the enzyme was stable in the ranges $20-40^{\circ}C$ and pH 6.0-8.0. Enzyme activity was increased by $Ca^{2+}$ and $Co^{2+}$ but inhibited by $Cu^{2+}$, EDTA, and PMSF. It is suggested that the purified enzyme is a metallo-serine protease.

Purification and Some Properties of Fibrinolytic Enzyme from Typha angustata Pollen (부들 화분 혈전 용해효소의 정제와 특성)

  • Park, Hae-Min;Gu, Ja-Hyeong;Oh, Man-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.1
    • /
    • pp.111-122
    • /
    • 2009
  • When the cattail pollen was identified by using fibrinolytic agents, we found that the fibrinolytic activity was controlled by an enzyme. Therefore, for determining the fibrinolytic activity of cattail pollen, the fibrinolytic enzyme in cattail pollen was purified by gel filtration using DEAE-cellulose, Sephadex G-150 and HPLC. Also, its purity was certified by polyacrylamide gel electrophoresis, and its physico-chemical properties, such as pH and temperature stabilities and effects of metal, inhibitors and substrates, were examined. The specific activity, purification fold, and molecular weight of the enzyme were 38U/mg, 86.4,and 75kDa, respectively. The optimum pH for the purified enzyme was at 4.0 and it was stable at pH 4.0-6.0. The optimum temperature was $55^{\circ}C$ and it was stable at $30-60^{\circ}C$. But the enzyme began to be inactivated at $70^{\circ}C$ and its activity was totally lost at temperatures above $80^{\circ}C$. As for substrate specificity, the enzyme was most effective in dissolving fibrin, followed by whole casein, ${\kappa}$-casein, ${\alpha}$-casein, ${\beta}$-casein, and BSA. With casein as the substrate, Km value was found to be 0.44mM and the enzyme showed a high affinity for casein. As for the metal ions affecting enzyme activity, $K^+$, $Na^+$, and $Mg^{2+}$ had no effect on enzyme reaction while $Zn^{2+}$ and $Fe^{2+}$ showed potent inhibitory activity. Judging from the fact that the purified enzyme was also strongly inhibited by PMSF, iodoacetic acid, and SDA, it assumed to be a serine protease.

  • PDF

Proteases and Antioxidant Activities of Doenjang, Prepared with Different Types of Salts, during Fermentation (소금 종류를 달리하여 제조한 된장들의 발효 중 protease 역가 및 항산화 활성 변화)

  • Shim, Jae Min;Lee, Kang Wook;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.303-310
    • /
    • 2016
  • In this study, doenjang samples were prepared with different types of salts (12%, w/w): purified salt (PS), 3-year aged solar salt (SS3), 1-year aged solar salt (SS1), and bamboo salt melted 3 times (BS). Whole-soybean mejus were fermented with starters consisting of 2 Bacillus strains, a yeast, and a fungus (starter doenjang), and control mejus were fermented with organisms present naturally in rice straw (non-starter doenjang). The whole-soybean mejus were dried, and then mixed with cooked soybeans and the respective salts. The doenjang samples were fermented for 13 weeks at 25℃. The protease (acid, neutral, and alkaline) activities, fibrinolytic activities, and antioxidant capacities of the samples were examined every week. BS doenjang showed the highest acid protease (6.46 ± 0.20 unit/g) and fibrinolytic activities (0.61 unit/ml). Among the starter doenjang samples, those made with SS and BS showed the highest total phenolic contents after 91 days of fermentation. For antioxidant activities, SS3 doenjang showed higher activities than the other doenjang samples, as evaluated by ABTS, DPPH, and FRAP assays. These results suggest that solar salt, especially aged for 3 years, is better than purified salt in terms of producing better functionalities of doenjang.

Purification and Characterization of a New Fibrinolytic Enzyme of Bacillus licheniformis KJ-31, Isolated from Korean Traditional Jeot-gal

  • Hwang, Kyung-Ju;Choi, Kyoung-Hwa;Kim, Myo-Jeong;Park, Cheon-Seok;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1469-1476
    • /
    • 2007
  • Jeot-gal is a traditional Korean fermented seafood and has long been used for seasoning. We isolated 188 strains from shrimp, anchovy, and yellow corvina Jeot-gal, and screened sixteen strains that showed strong fibrinolytic activities on a fibrin plate. Among those strains, the strain that had the largest halo zone was chosen and identified as Bacillus licheniformis by using 16S rDNA sequencing and an API CHB kit. The fibrinolytic activity of Bacillus licheniformis was characterized and designated as bpKJ-31. The active component of bpKJ-31 was identified as a 37 kDa protein, designated bacillopeptidase F, by internal peptide mapping and N-terminal sequencing. The optimum activity of bpKJ-31 was shown at pH 9 and $40^{\circ}C$, with a chromogenic substrate for plasmin. It had high degrading activity for the $B{\beta}$-chain and $A{\alpha}$-chain of fibrin(ogen), and also acted on thrombin, but not skim milk and casein. The amidolytic activity of bpKJ-31 was inhibited by 1 mM phenylmethanesulfonyl fluoride, but 1 mM EDTA did not affect the enzyme activity, indicating that bpKJ-31 is an alkaline serine protease, like a plasmin. The bpKJ-31 showed approximately 14.3% higher fibrinolytic activity than the plasmin. These features of bpKJ-31 make it attractive as a health-promoting biomaterial.