• Title/Summary/Keyword: fibre bonding

Search Result 25, Processing Time 0.025 seconds

Retrofitting of squat masonry walls by FRP grids bonded by cement-based mortar

  • Popa, Viorel;Pascu, Radu;Papurcu, Andrei;Albota, Emil
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.125-139
    • /
    • 2016
  • For seismic retrofitting of masonry walls, the use of fibre reinforced cement-based mortar for bonding the fibre grids can eliminate some of the shortcomings related to the use of resin as bonding material. The results of an experimental testing program on masonry walls retrofitted with fibre reinforced mortar and fibre grids are presented in this paper. Seven squat masonry walls were tested under unidirectional lateral displacement reversals and constant axial load. Steel anchors were used to increase the effectiveness of the bond between the fibre grids and the masonry walls. Application of fibre grids on both lateral faces of the walls effectively improved the hysteretic behaviour and specimens could be loaded until slip occurred in the horizontal joint between the masonry and the bottom concrete stub. Application of the fibre grids on a single face did not effectively improve the hysteretic behaviour. Retrofitting with fibre reinforced mortar only prevented the early damage but did not effectively increase deformation capacity. When the boundaries of the cross sections were not properly confined, midplane splitting of the masonry walls occurred. Steel anchors embedded in the walls in the corners area effectively prevented this type of failure.

Monitoring of Retrofitted Reinforced Concrete Beams with Hybrid Fiber Reinforced Polymer (광섬유 센서를 이용한 복합 섬유 재료로 보강된 철근 콘크리트 보의 모니터링)

  • 이옥기;신영수;김기수;김종우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.509-514
    • /
    • 2001
  • The Fibre-optic Bragg grating (FBG) sensor is broadly accepted as a structural health monitoring device for Fibre reinforced plastic (FRP) materials by either embedding into or bonding onto the structures. The accuracy of the strain measured by using the FBG sensor is highly dependent on the bonding characteristics among the bare optical fibre, protective coating, adhesive layer and host material. In general, the signal extracted from the embedded FBG sensor should reflect the straining condition of the host structure. This paper presents a theoretical model to evaluate the differential strains between the bare fibre and host material with different adhesive thickness and modulus of the protective coating of the embedded FBG sensor.

  • PDF

Numerical modelling of the pull-out response of inclined hooked steel fibres

  • Georgiadi-Stefanidi, Kyriaki;Panagouli, Olympia;Kapatsina, Alexandra
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.127-143
    • /
    • 2015
  • Steel fibre reinforced concrete (SFRC) is an anisotropic material due to the random orientation of the fibres within the cement matrix. Fibres under different inclination angles provide different strength contribution of a given crack width. For that the pull-out response of inclined fibres is of great importance to understand SFRC behaviour, particularly in the case of fibres with hooked ends, which are the most widely used. The paper focuses on the numerical modelling of the pull-out response of this kind of fibres from high-strength cementitious matrix in order to study the effects of different inclination angles of the fibres to the load-displacement pull-out curves. The pull-out of the fibres is studied by means of accurate three-dimensional finite element models, which take into account the nonlinearities that are present in the physical model, such as the nonlinear bonding between the fibre and the matrix in the early stages of the loading, the unilateral contact between the fibre and the matrix, the friction at the contact areas, the plastification of the steel fibre and the plastification and cracking of the cementitious matrix. The bonding properties of the fibre-matrix interface considered in the numerical model are based on experimental results of pull-out tests on straight fibres.

Retrofitting of RC girders using pre-stressed CFRP sheets

  • Bansal, Prem Pal;Sharma, Raju;Mehta, Ankur
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.833-849
    • /
    • 2016
  • Pre-stressing of existing structures using steel cables, FRP cables or FRP laminates has been successfully tried in the past. Retrofitting of beams using pre-stressed laminates does not utilize the full strength of the FRP due to de-bonding of the laminates before the fibre fracture. In the present study attempt has been made to overcome this problem by replacing the FRP laminates by the FRP sheets. In the present paper the effect of initial damage level and pre-stress level on strength, stiffness, cracking behaviour and failure mode of girders retrofitted using pre-stressed CFRP sheets has been studied. The results indicate that rehabilitation of initially damaged girders by bonding pre-stressed CFRP sheets improves the flexural behaviour of beams appreciably. However, it has been observed that with increase in pre-stressing force the load carrying capacity of the girders increases up to a particular level up to which the mode of failure is fibre fracture. Thereafter, the mode of failure shifts from fibre fracture to de-bonding and there is no appreciable increase in load carrying capacity with further increase in pre-stressing force.

효소처리에 의한 제지적성 개선

  • 김형진;조병묵
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.39-46
    • /
    • 2000
  • In pulp and papermaking process, enzymatic treatment of pulp fibres has been a topic of increasing interest in last decade. Lots of patents, papers and research reports were published on the application of enzymes in the fields of enzymatic bleaching, deinking, slime control, pitch control, waste water treatment and fibre modification. Cellulase and hemicellulase are the principal enzymes used for the modification of fibre property. This study was carried out for determinating the behaviors of enzyme to pulp fibres. A commercial enzyme, Denimax BT which is consisted with cellulase and hemicellulase, was treated to the kraft pulp produced from domestic hardwood mixtures. Results were mainly concentrated on the behaviors of freeness, drainability and fines content of fibres, and physical properties of paper with enzyme treatment. The freeness levels and dewatering ability were developed, and the fines contents were decreased. The creation of fines were controlled by the method of pre-enzyme treatment prior to fibre beating. The mechanical strength of paper, like tensile, burst, tear strength and folding endurance, were remarkably improved by the pre-enzyme treatment.

  • PDF

An Experimental Study on the Strengtheing Effect of Reinforced Concrete Beams Strengthened by CFRP Rod (탄소섬유막대로 보강한 철근콘크리트 보의 보강효과에 관한 실험적 연구)

  • Park, Sung-Moo;Kim, Jae-Hun;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.85-91
    • /
    • 2004
  • Rehabilitations of reinforced concrete(RC) structures using advanced fibre-reinfored plastic(FRP) composites has become very popular in last few years. Typical method of strengthening strategy using FRP composite is bonding the CFRP plate or sheet on the surface of existing concrete structures. Many researches, however, have shown that bonding FRP plate or sheet on the surface of concrete has tendancy to debond prematurely induced by stress concentrations at the end of the plate. In order for overcoming the premature failure, the filling-up method which places FRP-rod into the existing concrete sawing groove has been developed. Through filling-up test results, aims of this research is to investigate the efficiencies of the filling-up method and is to determine the availabilities of traditional flexural theories that has provided all over the world.

  • PDF

Bond between FRP formworks and concrete-effect of surface treatments and adhesives

  • Goyal, Reema;Mukherjee, Abhijit;Goyal, Shweta
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.671-692
    • /
    • 2016
  • FRP stay-in-place (SIP) formworks are designed as a support for casting concrete and as a tension reinforcement when concrete is cured. Bond development between SIP formwork and concrete is critical for FRP tension element to be effective. This paper reports the bond strength between FRP formwork and concrete for different interfacial treatments. A novel experimental setup is prepared for observing the bond behaviour. Three different adhesives with varying workability have been investigated. Along with the load-deformation characteristics, bond slip and strains in the formwork have been measured. A finite element numerical simulation was conducted for the experiments to understand the underlying mechanism. The results show that the adhesive bonding has the best bond strength.

Flexural Characteristics of Coir Fiber Reinforced Cementitious Composites

  • Li Zhi-Jian;Wang Li-Jing;Wang Xungai
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.286-294
    • /
    • 2006
  • This study has examined the flexural properties of natural and chemically modified coir fiber reinforced cementitious composites (CFRCC). Coir fibers of two different average lengths were used, and the longer coir fibers were also treated with a 1% NaOH solution for comparison. The fibers were combined with cementitious materials and chemical agents (dispersant, defoamer or wetting agent) to form CFRCC. The flexural properties of the composites, including elastic stress, flexural strength, toughness and toughness index, were measured. The effects of fiber treatments, addition of chemical agents and accelerated ageing of composites on the composites' flexural properties were examined. The results showed that the CFRCC samples were 5-12 % lighter than the conventional mortar, and that the addition of coir fibers improved the flexural strength of the CFRCC materials. Toughness and toughness index, which were associated with the work of fracture, were increased more than ten times. For the alkalized long coir fiber composites, a higher immediate and long-term toughness index was achieved. SEM microstructure images revealed improved physicochemical bonding in the treated CFRCC.

Modelling seismically repaired and retrofitted reinforced concrete shear walls

  • Cortes-Puentes, W. Leonardo;Palermo, Dan
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.541-561
    • /
    • 2011
  • The Finite Element Method (FEM) was employed to demonstrate that accurate simulations of seismically repaired and retrofitted reinforced concrete shear walls can be achieved provided a good analysis program with comprehensive models for material and structural behaviour is used. Furthermore, the analysis tool should have the capability to retain residual damage experienced by the original structure and carry it forward in the repaired and retrofitted structure. The focus herein is to provide quick, simple, but reliable modelling procedures for repair and retrofitting strategies such as concrete replacement, addition of diagonal reinforcing bars, bolting of external steel plates, and bonding of external steel plates and fibre reinforced polymer sheets, thus illustrating versatility in the modelling. Slender, squat, and slender-squat shear walls were investigated. The modelling utilized simple rectangular membrane elements for the concrete, truss bar elements for the steel and FRP retrofitting materials, and bond-link elements for the bonding interface between steel or FRP to concrete. The analyses satisfactorily simulated seismic behaviour, including lateral load capacity, displacement capacity, energy dissipation, hysteretic response, and failure mode.

Experimental and analytical investigation of steel beams rehabilitated using GFRP sheets

  • El Damatty, A.A.;Abushagur, M.;Youssef, M.A.
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.421-438
    • /
    • 2003
  • Aging and deterioration of existing steel structures necessitate the development of simple and efficient rehabilitation techniques. The current study investigates a methodology to enhance the flexural capacity of steel beams by bonding Glass Fibre Reinforced Plastic (GFRP) sheets to their flanges. A heavy duty adhesive, tested in a previous study is used to bond the steel and the GFRP sheet. In addition to its ease of application, the GFRP sheet provides a protective layer that prevents future corrosion of the steel section. The study reports the results of bending tests conducted on a W-shaped steel beam before and after rehabilitation using GFRP sheets. Enhancement in the moment capacity of the beam due to bonding GFRP sheet is determined from the test results. A closed form analytical model that can predict the yield moment as well as the stresses induced in the adhesive and the GFRP sheets of rehabilitated steel beam is developed. A detailed finite element analysis for the tested specimens is also conducted in this paper. The steel web and flanges as well as the GFRP sheets are simulated using three-dimensional brick elements. The shear and peel stiffness of the adhesive are modeled as equivalent linear spring systems. The analytical and experimental results indicate that a significant enhancement in the ultimate capacity of the steel beam is achieved using the proposed technique. The finite element analysis is employed to describe in detail the profile of stresses and strains that develop in the rehabilitated steel beam.