Browse > Article
http://dx.doi.org/10.12989/scs.2016.20.3.671

Bond between FRP formworks and concrete-effect of surface treatments and adhesives  

Goyal, Reema (Department of Civil Engineering, Thapar University)
Mukherjee, Abhijit (Department of Civil Engineering, Curtin University)
Goyal, Shweta (Department of Civil Engineering, Thapar University)
Publication Information
Steel and Composite Structures / v.20, no.3, 2016 , pp. 671-692 More about this Journal
Abstract
FRP stay-in-place (SIP) formworks are designed as a support for casting concrete and as a tension reinforcement when concrete is cured. Bond development between SIP formwork and concrete is critical for FRP tension element to be effective. This paper reports the bond strength between FRP formwork and concrete for different interfacial treatments. A novel experimental setup is prepared for observing the bond behaviour. Three different adhesives with varying workability have been investigated. Along with the load-deformation characteristics, bond slip and strains in the formwork have been measured. A finite element numerical simulation was conducted for the experiments to understand the underlying mechanism. The results show that the adhesive bonding has the best bond strength.
Keywords
Fibre Reinforced Polymers (FRP); bond; adhesives; aggregate bonding; adhesive bonding; failure modes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bakis, C., Bank, L., Brown, V., Cosenza, E., Davalos, J., Lesko, J., Machida, A., Rizkalla, S. and Triantafillou, T. (2002), "Fiber-reinforced polymer composites for construction - State-of-the-art review", J. Compos. Construct., 6(2), 73-87.   DOI
2 Bank, L., Oliva, M., Bae, H.-U., Barker, J. and Yoo, S.-W. (2007), "Pultruded FRP plank as formwork and reinforcement for concrete members", Adv. Struct. Eng., 10(5), 525-535.   DOI
3 Berg, A.C., Bank, L.C., Oliva, M.G. and Russell, J.S. (2006), "Construction and cost analysis of an FRP reinforced concrete bridge deck", Construct. Build. Mater., 20(8), 515-526.   DOI
4 Boles, R., Nelson, M. and Fam, A. (2014), "Durability of bridge deck with FRP stay-in-place structural forms under freeze-thaw cycles", J. Compos. Construct., 19(4), 04014070.   DOI
5 Brosens, K. and Van Gemert, D. (1997), "Anchoring stresses between concrete and carbon fibre reinforced laminates", Proceedings of International Conference on Composite Construction-Conventional and Innovative, Innsbruck, Austria, September.
6 Chajes, M.J., Finch, W.W., Januszka, T.F. and Thomson, T.A. (1996), "Bond and force transfer of composite-material plates bonded to concrete", Struct. J., 93(2), 209-217.
7 Cheng, L., Zhao, L., Karbhari, V., Hegemier, G. and Seible, F. (2005), "Assessment of a steel-free fiber reinforced polymer-composite modular bridge system", J. Struct. Eng., 131(3), 498-506.   DOI
8 Cho, K., Cho, J.-R., Chin, W.-J. and Kim, B.-S. (2006), "Bond-slip model for coarse sand coated interface between FRP and concrete from optimization technique", Comput. Struct., 84(7), 439-449.   DOI
9 Cho, J.-R., Cho, K., Park, S.Y., Kim, S.T. and Kim, B.-S. (2010), "Bond characteristics of coarse sand coated interface between stay-in-place fibre-reinforced polymer formwork and concrete based on shear and tension tests", Can. J. Civil Eng., 37(5), 706-718.   DOI
10 Dieter, D.A. (2002), Experimental and Analytical Study of Concrete Bridge Decks Constructed with FRP Stay-in-Place Forms and FRP Grid Reinforcing, University of Wisconsin-Madison, Madison, WI, USA.
11 Dieter, D., Dietsche, J., Bank, L., Oliva, M. and Russell, J. (2002), "Concrete bridge decks constructed with fiber-reinforced polymer stay-in-place forms and grid reinforcing", Transportation Research Record: J. Transport. Res. Board, 1814(26), 219-226.   DOI
12 Fam, A. and Nelson, M. (2012), "New bridge deck cast onto corrugated GFRP stay-in-place structural forms with interlocking connections", J. Compos. Construct., 16(1), 110-117.   DOI
13 Fam, A. and Rizkalla, S. (2001), "Behavior of axially loaded concrete-filled circular fiber-reinforced polymer tubes", Struct. J., 98(3), 280-289.
14 Hall, J. and Mottram, J. (1998), "Combined FRP reinforcement and permanent formwork for concrete members", J. Compos. Construct., 2(2), 78-86.   DOI
15 He, J., Liu, Y., Chen, A. and Dai, L. (2012), "Experimental investigation of movable hybrid GFRP and concrete bridge deck", Construct. Build. Mater., 26(1), 49-64.   DOI
16 Honickman, H.N. (2008), Pultruded GFRP Sections as Stay-in-Place Structural Open Formwork for Concrete Slabs and Girders, Queen's University Kingston, ON, Canada.
17 Honickman, H. and Fam, A. (2009), "Investigating a structural form system for concrete girders using commercially available GFRP sheet-pile sections", J. Compos. Construct., 13(5), 455-465.   DOI
18 Hosseini, A. and Mostofinejad, D. (2014), "Effective bond length of FRP-to-concrete adhesively-bonded joints: Experimental evaluation of existing models", Int. J. Adhes. Adhes., 48, 150-158.   DOI
19 Li, L., Shao, Y. and Wu, Z. (2010), "Durability of wet bond of hybrid laminates to cast-in-place concrete", J. Compos. Construct., 14(2), 209-216.   DOI
20 Keller, T., Schaumann, E. and Vallee, T. (2007), "Flexural behavior of a hybrid FRP and lightweight concrete sandwich bridge deck", Composites Part A: Appl. Sci. Manuf., 38(3), 879-889.   DOI
21 Matta, F., Nanni, A., Ringelstetter, T.E. and Bank, L.C. (2006), Rapid Construction of Concrete Bridge Deck using Prefabricated FRP Reinforcement.
22 Mukherjee, A. and Arwikar, S.J. (2005a), "Performance of glass fiber reinforced polymer rebars in tropical environment- II.Microstructural tests", ACI Struct. J., 102(6), 816-822.
23 Mukherjee, A. and Arwikar, S.J. (2005b), "Performance of gass fiber-reinforced polymer reinforcing bars in tropical environments - Part I: Structural scale tests", ACI Struct. J., 102(5), 745-753.
24 Mukherjee, A. and Arwikar, S.J. (2007a), "Performance of externally bonded GFRP sheets on concrete in tropical environments.Part I: Structural scale tests", Compos. Struct., 81(1), 21-32.   DOI
25 Mukherjee, A. and Arwikar, S.J. (2007b), "Performance of externally bonded GFRP sheets on concrete in tropical environments.Part II: Microstructural tests", Compos. Struct., 81(1), 33-40.   DOI
26 Mukherjee, A. and Jain, K. (2013), "A semi-analytical model of cyclic behavior of reinforced concrete joints rehabilitated with FRP", Adv. Struct. Eng., 16(12), 2019-2034.   DOI
27 Mukherjee, A. and Joshi, M. (2005), "FRPC reinforced concrete beam-column joints under cyclic excitation", Compos. Struct., 70(2), 185-199.   DOI
28 Nelson, M., Eldridge, A. and Fam, A. (2013), "The effects of splices and bond on performance of bridge deck with FRP stay-in-place forms at various boundary conditions", Eng. Struct., 56, 509-516.   DOI
29 Mukherjee, A., Boothby, T., Bakis, C., Joshi, M. and Maitra, S. (2004), "Mechanical behavior of fiberreinforced polymer-wrapped concrete columns - Complicating effects", J. Compos. Construct., 8(2), 97-103.   DOI
30 Mukherjee, A., Bagadi, S.P. and Rai, G.L. (2009), "Semianalytical modeling of concrete beams rehabilitated with externally prestressed composites", J. Compos. Construct., 13(2), 74-81.   DOI
31 Nelson, M.S., Fam, A.Z., Busel, J.P., Bakis, C.E., Nanni, A., Bank, L.C., Henderson, M. and Hanus, J. (2014), "FRP stay-in-place structural forms for concrete bridge decks: A state-of-the-art review", Struct. J., 111(5).
32 Reising, R., Shahrooz, B., Hunt, V., Neumann, A. and Helmicki, A. (2004), "Performance comparison of four fiber-reinforced polymer deck panels", J. Compos. Construct., 8(3), 265-274.   DOI
33 Ringelstetter, T., Bank, L., Oliva, M., Russell, J., Matta, F. and Nanni, A. (2006), "Cost-effective, structural stay-in-place formwork system of fiber - Reinforced polymer for accelerated and durable bridge deck construction", Transportation Research Record: J. Transport. Res. Board, 1976, 183-189.
34 Shield, C., French, C. and Milde, E. (2005), "The effect of adhesive type on the bond of NSM tape to concrete", Special Publication, 230, 355-372.
35 Teng, J. and Lam, L. (2004), "Behavior and modeling of fiber reinforced polymer-confined concrete", J. Struct. Eng., 130(11), 1713-1723.   DOI
36 Wu, Z. and Yin, J. (2003), "Fracturing behaviors of FRP-strengthened concrete structures", Eng. Fract. Mech., 70(10), 1339-1355.   DOI
37 Ueda, T. and Dai, J. (2005), "Interface bond between FRP sheets and concrete substrates: properties, numerical modeling and roles in member behaviour", Prog. Struct. Eng. Mater., 7(1), 27-43.   DOI
38 Wang, H. and Belarbi, A. (2005), "Flexural behavior of fiber-reinforced-concrete beams reinforced with FRP rebars", Special Publication, 230, 895-914.
39 Wright, H.D., Evans, H.R. and Harding, P.W. (1987), "The use of profiled steel sheeting in floor construction", J. Constr. Steel Res., 7(4), 279-295.   DOI
40 Wu, L., Hoa, S.V. and Ton-That, M.-T. (2004), "Effects of water on the curing and properties of epoxy adhesive used for bonding FRP composite sheet to concrete", J. Appl. Polym. Sci., 92(4), 2261-2268.   DOI
41 Zhang, P., Wu, G., Zhu, H., Meng, S. and Wu, Z. (2014), "Mechanical performance of the wet-bond interface between FRP plates and cast-in-place concrete", J. Compos. Construct., 18(6), 04014016.   DOI
42 Zhang, L., Wang, W., Harries, K. and Tian, J. (2015), "Bonding behavior of wet-bonded GFRP-concrete interface", J. Compos. Construct., 19(6), 04015001.   DOI