• 제목/요약/키워드: fiber form

검색결과 621건 처리시간 0.027초

CFS로 보강된 RC보의 피로거동에 관한 연구 (A Study on Fatigue Behaviors of RC Beams Strengthened with Carbon Fiber Sheets)

  • 박정용;정진환;김성도;조백순;장준환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.35-38
    • /
    • 2005
  • Carbon fiber sheets are widely used for strengthening the deteriorated RC structures. However most studies on the strengthening method of RC structures with carbon fiber sheets are concerning static problems. The purpose of this experimental study is to present the basic data on fatigue behaviors of. RC beams strengthened with carbon fiber sheets. The experimental parameters of this study are ; 1) the existence of U-shaped carbon fiber sheets at the ends for anchoring, 2) the number of carbon fiber sheet layers in strengthening the RC beams, 3) the load levels of $60\%\~90\%$ of the static bending moment strength, which is obtained form the static tests. Experimental results are estimated from the relationships of load level, displacement, number of repeated load and released energy. It is concluded that U-shaped carbon fiber sheets for end anchoring is very effective and the beams strengthened with one layer of carbon fiber sheet have longer fatigue life than that with three layers.

  • PDF

Effect of Carbon Fiber Layer on Electrochemical Properties of Activated Carbon Electrode

  • Jong kyu Back;Jihyeon Ryu;Yong-Ho Park;Ick-Jun Kim;Sunhye Yang
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.184-193
    • /
    • 2023
  • This study investigates the effects of a carbon fiber layer formed on the surface of an etched aluminum current collector on the electrochemical properties of the activated carbon electrodes for an electric double layer capacitor. A particle size analyzer, field-emission SEM, and nitrogen adsorption/desorption isotherm analyzer are employed to analyze the structure of the carbon fiber layer. The electric and electrochemical properties of the activated carbon electrodes using a carbon fiber layer are evaluated using an electrode resistance meter and a charge-discharge tester, respectively. To uniformly coat the surface with carbon fiber, we applied a planetary mill process, adjusted the particle size, and prepared the carbon paste by dispersing in a binder. Subsequently, the carbon paste was coated on the surface of the etched aluminum current collector to form the carbon under layer, after which an activated carbon slurry was coated to form the electrodes. Based on the results, the interface resistance of the EDLC cell made of the current collector with the carbon fiber layer was reduced compared to the cell using the pristine current collector. The interfacial resistance decreased from 0.0143 Ω·cm2 to a maximum of 0.0077 Ω·cm2. And degradation reactions of the activated carbon electrodes are suppressed in the 3.3 V floating test. We infer that it is because the improved electric network of the carbon fiber layer coated on the current collector surface enhanced the electron collection and interfacial diffusion while protecting the surface of the cathode etched aluminum; thereby suppressing the formation of Al-F compounds.

섬유의 보강 형태에 따른 섬유-시멘트 혼합토의 일축압축강도특성 (Unconfined Compressive Strength of Fiber-reinforced Cemented Sands by Fiber Reinforcement Form)

  • 박성식;김영수;이종천
    • 한국지반공학회논문집
    • /
    • 제23권8호
    • /
    • pp.159-169
    • /
    • 2007
  • 취성적인 파괴를 보이는 시멘트 혼합토의 역학적 특성을 개선하기 위하여 단섬유를 사용한 섬유시멘트 혼합토에 관한 연구를 수행하였다. 낙동강 유역에서 채취한 모래, 보통포틀랜드시멘트 그리고 최근 콘크리트와 시멘트 보강재로 많이 사용되고 있는 폴리비닐알코올(PVA) 섬유를 사용하였다. PVA 섬유는 시멘트와 접착성이 매우 우수하며 비중이 1.3으로 물보다 약간 큰 것이 특징이며 시멘트 보강재로 사용되고 있는 일반 PVA 섬유보다는 다소 직경이 큰 0.1mm의 PVA 섬유를 사용하였다. 깨끗한 낙동강 모래에 시멘트와 섬유를 최적함수비로 잘 섞은 후 5층으로 나누어 층당 55회 다짐하여 공시체를 만든 후 7일간 양생시켰다. 모든 공시체의 시멘트 혼합율은 4%로 동일하지만 섬유의 혼합위치를 다르게 시료를 제작하여 일축압축시험을 실시하였다. 강도시험에서 섬유의 보강 형태와 위치에 따른 일축압축강도의 특성을 비교하였으며, 동일한 양의 섬유가 균일하게 보강된 경우의 일축압축강도가 그렇지 않은 경우보다 약 2배 증가하였다. 층당 섬유 혼합율이 동일할 경우 섬유 보강율이 증가함에 따라 일축압축강도도 증가하였으며, 전층이 보강되었을 때의 일축압축강도는 중간층만 보강된 경우보다 1.5배 이상 강도가 증가하였다. 섬유-시멘트 혼합토 거동에서 섬유의 혼합율과 섬유가 골고루 잘 분산되도록 하는 방법 또는 분산이 용이한 섬유를 선택하는 것이 중요하였다.

Validation of a non-linear hinge model for tensile behavior of UHPFRC using a Finite Element Model

  • Mezquida-Alcaraz, Eduardo J.;Navarro-Gregori, Juan;Lopez, Juan Angel;Serna-Ros, Pedro
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.11-23
    • /
    • 2019
  • Nowadays, the characterization of Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) tensile behavior still remains a challenge for researchers. For this purpose, a simplified closed-form non-linear hinge model based on the Third Point Bending Test (ThirdPBT) was developed by the authors. This model has been used as the basis of a simplified inverse analysis methodology to derive the tensile material properties from load-deflection response obtained from ThirdPBT experimental tests. In this paper, a non-linear finite element model (FEM) is presented with the objective of validate the closed-form non-linear hinge model. The state determination of the closed-form model is straightforward, which facilitates further inverse analysis methodologies to derive the tensile properties of UHPFRC. The accuracy of the closed-form non-linear hinge model is validated by a robust non-linear FEM analysis and a set of 15 Third-Point Bending tests with variable depths and a constant slenderness ratio of 4.5. The numerical validation shows excellent results in terms of load-deflection response, bending curvatures and average longitudinal strains when resorting to the discrete crack approach.

Concentric Core Fiber Design for Optical Fiber Communication

  • Nadeem, Iram;Choi, Dong-You
    • Journal of information and communication convergence engineering
    • /
    • 제14권3호
    • /
    • pp.163-170
    • /
    • 2016
  • Because of rapid technological advancements, increased data rate support has become the key criterion for future communication medium selection. Multimode optical fibers and multicore optical fibers are well matched to high data rate throughput requirements because of their tendency to support multiple modes through one core at a time, which results in higher data rates. Using the numerical mode solver OptiFiber, we have designed a concentric core fiber by investigating certain design parameters, namely core diameter (µm), wavelength (nm), and refractive index profile, and as a result, the number of channels, material losses, bending losses, polarization mode dispersion, and the effective nonlinear refractive index have been determined. Space division multiplexing is a promising future technology that uses few-mode fibers in parallel to form a multicore fiber. The experimental tests are conducted using the standard second window wavelength of 1,550 nm and simulated results are presented.

Improvement of the mechanical performance and dyeing ability of bamboo fiber by atmospheric pressure air plasma treatment

  • Hoa, Ta Phuong;Chuong, Bui;Hung, Dang Viet;Tien, Nguyen Dung;Khanh, Vu Thi Homg
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2009년도 학술발표대회
    • /
    • pp.14-20
    • /
    • 2009
  • Atmospheric pressure air plasma was applied for treatment of different kinds of natural bamboo fiber to improve their mechanical properties and surface characteristics, which are suitable for adhesion and dyeing. The tensile strength and Young modulus of bamboo fiber were significantly improved; SEM and AFM study show that the surface of fiber became cleaner and rougher after plasma treatment. Plasma treatment caused the cracking, removing of the protective skin of alkali-untreated fiber and etching to form a cleaner and rougher surface. The dyeability of both groups of bamboo fiber which are used for composite and textile purposes is significantly enhanced after treatment.

  • PDF

화재시 횡구속재 변화에 따른 고성능 콘크리트의 폭열방지성능에 관한 기초적 연구 (A Fundamental Study on the Performance of Spalling Resistance of High Performance Concrete with Material of Lateral Confinement Subjected to Fire)

  • 배정렬;황인성;홍상희;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술논문발표회
    • /
    • pp.47-50
    • /
    • 2002
  • This paper presents the results of fire resistance properties of high performance concrete varying with fiber kinds and the size of metal lath in order to verify the validities of fiber on the spatting resistance by fire. Metal lath, glass fiber and carbon fiber are used to confine the concrete. According to test results, plain concrete without lateral confinement and confined concrete with glass fiber and carbon fiber show entire failure after exposed to fire, while confined concrete with metal lath take place in the form of slight surface spatting by fire, which has favorable spatting resistance of concrete. As for the effect of the size of metal lath, when the size of metal lath is more than 1.2mm of thickness, the residual strength of concrete exposed to fire maintains more than 80% of its original strength. However, glass fiber and carbon fiber does not perform desirable spatting resistance by fire due to loss of lateral confinement of fiber exposed to fire caused by melting of fiber and reducing bond strength between concrete and fiber.

  • PDF

산채류의 식이섬유 함량과 물리적 특성 (Dietary Fiber Contents and Physical Properties of Wild Vegetables)

  • 박종숙;이원종
    • 한국식품영양과학회지
    • /
    • 제23권1호
    • /
    • pp.120-124
    • /
    • 1994
  • 9종의 산채류를 분석한 결과 건물량으로 33~55%의 식이섬유를 함유하였다. 그 중 달래는 22%의 수용성 식이섬유와 49%의 총 식이섬유를 함유하였고 더덕은 21%의 수용성 식이섬유와 55%의 총 식이섬유를 함유하였다. 야생더덕은 재배더덕에 비하여 8% 더 많은 식이섬유를 함유하였다. 산채류의 수분 흡착력은 밀기울이나 콩식이섬유보다 높았으나 oil 흡착력은 낮았다. 산채류를 분쇄하여 여과 처리한 결과 더덕의 경우 총 식이섬유 함량이 55%에서 83%로, 달래의 경우 49%에서 69%로 증가하였다.

  • PDF

Capillary Water Absorption Properties of Steel Fiber Reinforced Coal Gangue Concrete under Freeze-Thaw Cycles

  • Qiu, Jisheng;Zheng, Juanjuan;Guan, Xiao;Pan, Du;Zhang, Chenghua
    • 한국재료학회지
    • /
    • 제27권8호
    • /
    • pp.451-458
    • /
    • 2017
  • The service life of coal gangue concrete(CGC) strongly depends on the capillary water absorption, this water absorption is susceptible to freeze-thaw cycles. In this paper, the cumulative water absorption and sorptivity were obtained to study the effects of 0, 0.5, 1.0, and 1.5 % steel fiber volume fraction added on the water absorption of CGC. Sorptivity and freeze-thaw tests were conducted, and the capillary water absorption was evaluated by the rate of water absorption(sorptivity). Three prediction models for the initial sorptivity of steel fiber reinforced coal gangue concrete(SFRCGC) under freeze-thaw cycles were established to evaluate the capillary water absorption of SFRCGC. Results showed that, without freeze-thaw cycles, the water absorption of CGC decreased when steel fiber at 1.0 % volume fraction was added, however, the water absorption increased with the addition of 0.5 or 1.5 % steel fibers. Once the SFRCGC specimens were exposed to freeze-thaw cycles, the water absorption of SFRCGC significantly increased, and 1.0 % steel fiber in volume fraction added to CGC caused the lowest water absorption, except for the case of the sample without steel fibers added. The CGC with steel fiber at 1.0 % volume fraction performed better. The SFRCGC has a strong response to freeze-thaw cycles. Results also showed that the linear function prediction model is practical in the field of engineering because of its simple form and a relatively high precision. Although the polynomial prediction model presents the highest computation precision among the three models, the complicated form and too many coefficients make it impractical for engineering applications.

Glass Fiber Post와 Composite Resin Core의 전단결합강도 (A STUDY FOR THE BONDING STRENGTH OF COMPOSITE RESIN CORE TO GLASS FIBER POST)

  • 김태형;심준성;이근우
    • 대한치과보철학회지
    • /
    • 제43권4호
    • /
    • pp.415-425
    • /
    • 2005
  • Statement of problem : Fracture of composite resin core will be occulted by progress of crack. Bonding interface of different materials has large possibility of starting point of crack line. Therefore, the bond strength of glass fiber post to composite resin core is important for prevention of fracture. Purpose: This in vitro study tried to find out how to get the higher strength of glass fiber post to composite resin core through surveying the maximum load that fractures the post and cote complex. Materials and methods: 40 specimens made with glass fiber Posts(Style $post^{(R)}$, Metalor, Swiss) and composite resin core ($Z-100^{(R)}$, 3M, USA) were prepared and loaded to failure with push-out type shear-bond strength test in a universal test machine. The maximum fracture load and fracture mode were investigated in the specimens that were restored with four different surface treatments. With the data. ANOVA test was used to validate the significance between the test groups, and Bonferroni method was used to check if there is any significant statistical difference between each test group. Evely analysis was approved with 95% reliance. Results: On measuring the maximum fracture load of specimens, both the treatments of sandblasted and acid-etched one statistically showed the strength increase rather than the control group (p<0.005). The scanning electric microscope revealed that sand blasting made more micro-retention form not only on the resin matrix but on the glass fiber, and acid-etching contributed to increase in surface retention form, eliminated the inorganic particles in resin matrix. Specimen fracture modes investigation represented that sand blasted groups showed lower bonding failure than no-sand blasted groups. Conclusion: Referring to the values of maximum fracture load of specimens, the bonding strength was increased by sand blasting and acid-etching.