Browse > Article
http://dx.doi.org/10.12989/cac.2019.23.1.011

Validation of a non-linear hinge model for tensile behavior of UHPFRC using a Finite Element Model  

Mezquida-Alcaraz, Eduardo J. (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia)
Navarro-Gregori, Juan (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia)
Lopez, Juan Angel (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia)
Serna-Ros, Pedro (Instituto de Ciencia y Tecnologia del Hormigon (ICITECH), Universitat Politecnica de Valencia)
Publication Information
Computers and Concrete / v.23, no.1, 2019 , pp. 11-23 More about this Journal
Abstract
Nowadays, the characterization of Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) tensile behavior still remains a challenge for researchers. For this purpose, a simplified closed-form non-linear hinge model based on the Third Point Bending Test (ThirdPBT) was developed by the authors. This model has been used as the basis of a simplified inverse analysis methodology to derive the tensile material properties from load-deflection response obtained from ThirdPBT experimental tests. In this paper, a non-linear finite element model (FEM) is presented with the objective of validate the closed-form non-linear hinge model. The state determination of the closed-form model is straightforward, which facilitates further inverse analysis methodologies to derive the tensile properties of UHPFRC. The accuracy of the closed-form non-linear hinge model is validated by a robust non-linear FEM analysis and a set of 15 Third-Point Bending tests with variable depths and a constant slenderness ratio of 4.5. The numerical validation shows excellent results in terms of load-deflection response, bending curvatures and average longitudinal strains when resorting to the discrete crack approach.
Keywords
finite element model; numerical validation; ultra-high performance fiber-reinforced concrete; closed-form non-linear hinge model; third point bending test; smeared cracking approach; discrete cracking approach;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lampropoulos, A.P., Paschalis, S.A., Tsioulou, O.T. and Dritsos, S.E. (2016). "Strengthening of reinforced concrete beams using ultra high performance fibre reinforced concrete (UHPFRC)", Eng. Struct., 106, 370-384.   DOI
2 Lee, J.H., Hong, S.G., Joh, C., Kwahk, I. and Lee, J.W. (2017). "Biaxial tension-compression strength behaviour of UHPFRC in-plane elements", Mater. Struct., Mater. Constr., 50(1), 20.   DOI
3 Wille, K., El-Tawil, S. and Naaman, A.E. (2014). "Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading", Cement Concrete Compos., 48, 53-66.   DOI
4 Wille, K., Kim, D.J. and Naaman, A.E. (2010). "Strain-hardening UHP-FRC with low fiber contents", Mater. Struct., 44(3), 583-598.   DOI
5 Yang, I.H., Joh, C. and Kim, B.S. (2010). "Structural behavior of ultra high performance concrete beams subjected to bending", Eng. Struct., 32(11), 3478-3487.   DOI
6 Yoo, D.Y. and Banthia, N. (2015). "Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars", Comput. Concrete, 16(5), 759-774.   DOI
7 Yoo, D.Y., Kang, S.T., Banthia, N. and Yoon, Y.S. (2017). "Nonlinear finite element analysis of ultra-high-performance fiber-reinforced concrete beams", Int. J. Damage Mech., 26(5), 735-757.   DOI
8 Yoo, D.Y., Zi, G., Kang, S.T. and Yoon, Y.S. (2015). "Biaxial flexural behavior of ultra-high-performance fiber-reinforced concrete with different fiber lengths and placement methods", Cement Concrete Compos., 63, 51-66.   DOI
9 Kang, S.T., Lee, Y., Park, Y.D. and Kim, J.K. (2010). "Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber", Compos. Struct., 92(1), 61-71.   DOI
10 Rahdar, H. and Ghalehnovi, M. (2016). "Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar", Comput. Concrete, 18(1), 139-154.   DOI
11 Rigaud, S., Chanvillard, G. and Chen, J. (2012). "Characterization of bending and tensile behavior of ultra-high performance concrete containing glass fibers", High Performance Fiber Reinforced Cement Composites 6: HPFRCC 6, Eds. G.J. Parra-Montesinos, H.W. Reinhardt and A.E. Naaman, Springer Netherlands, Dordrecht, 373-380.
12 RILEM TC 162-TDF. (2002). "Recommendations of RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete Design of steel fibre reinforced concrete using the sigma-epsilon method: principles and applications", Mater. Struct., RILEM, 35(249), 262-278.   DOI
13 Singh, M., Sheikh, A.H., Mohamed Ali, M.S., Visintin, P. and Griffith, M.C. (2017), "Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams", Constr. Build. Mater., 138, 12-25.   DOI
14 Rots, J.G. (2002). "Comparative study of crack models", Proceedings of the 3rd DIANA World Conference, Finite Elements in Civil Engineering Applications, 17-28.
15 Rots, J.G. and Blaauwendraad, J. (1989). "Crack models for concrete, discrete or smeared? Fixed, multi-directional or rotating?", HERON, 34(1), Delft University of Technology.
16 Sadouki, H., Denarie, E. and Bruhwiler, E. (2017). "Validation of a FEA model of structural response of RC-cantilever beams strengthened with a (R-) UHPFRC layer", Constr. Build. Mater., 140, 100-108.   DOI
17 Soranakom, C. and Mobasher, B. (2007). "Closed-form moment-curvature expressions for homogenized fiber-reinforced concrete", ACI Mater. J., 104(4), 351-359.
18 Stang, H. and Olesen, J.F. (1998). "On the interpretation of bending tests on FRC-materials", Fracture Mechanics of Concrete Structures, AEDIFICATIO Publishers, D-79104 Freiburg, Germany.
19 Tran, N.T., Tran, T.K. and Kim, D.J. (2015). "High rate response of ultra-high-performance fiber-reinforced concretes under direct tension", Cement Concrete Res., 69, 72-87.   DOI
20 Switek, A. (2008). "Smeared crack modelling of fracture in materials with significant bulk energy dissipation", Ecole Polytechnique Federale de Lausanne, Lausanne, 0-14.
21 Tysmans, T., Wozniak, M., Remy, O. and Vantomme, J. (2015). "Finite element modelling of the biaxial behaviour of high-performance fibre-reinforced cement composites (HPFRCC) using concrete damaged plasticity", Finite Elem. Anal. Des., 100, 47-53.   DOI
22 Uchida, Y. and Kurihara, N. (1995). "Determination of tension softening diagrams of various kinds of concrete by means of numerical analysis", Fracture Mechanics of Concrete Structures - FraMcoS 2, AEDIFICATIO Unterengstringin, 17-30.
23 Wan, L., Wendner, R., Liang, B. and Cusatis, G. (2016). "Analysis of the behavior of ultra high performance concrete at early age", Cement Concrete Compos., 74(15), 120-135.   DOI
24 Liu, J., Han, F., Cui, G., Zhang, Q., Lv, J., Zhang, L. and Yang, Z. (2016). "Combined effect of coarse aggregate and fiber on tensile behavior of ultra-high performance concrete", Constr. Build. Mater., 121, 310-318.   DOI
25 Lopez, J.A. (2017). "Characterisation of the tensile behaviour OF UHPFRC by means of four-point bending tests", Universitat Politecnica de Valencia, Valencia, Spain.
26 Lopez, J.A ., Serna, P., Navarro-Gregori, J. and Camacho, E. (2015a). "An inverse analysis method based on deflection to curvature transformation to determine the tensile properties of UHPFRC", Mater. Struct., 48(11), 3703-3718.   DOI
27 Lopez, J.A ., Serna, P., Navarro-Gregori, J. and Coll, H. (2016). "A simplified five-point inverse analysis method to determine the tensile properties of UHPFRC from unnotched four-point bending tests", Compos. Part B: Eng., 91, 189-204.   DOI
28 Mahmud, G.H., Yang, Z. and Hassan, A.M.T. (2013). "Experimental and numerical studies of size effects of Ultra High Performance Steel Fibre Reinforced Concrete (UHPFRC) beams", Constr. Build. Mater., 48, 1027-1034.   DOI
29 Lopez, J., Serna, P., Navarro-Gregori, J. and Coll, H. (2015b). "Comparison between an inverse analysis procedure results and experimental measurements obtained from UHPFRC Four-Point Bending Tests", Seventh International RILEM Conference on High Performance Fiber Reinforced Cement Composites (HPFRCC7), H.G. H.W. Reinhardt, G.J. Parra-Montesinos, ed., RILEM Publications SARL, 185-192.
30 Maalej, M. and Li, V.C. (1994). "Flexural strength of fiber cementitious composites", ASCE J. Mater. Civil Eng., ASCE, 6(3), 390-406.   DOI
31 Olesen, J.F. (2001). "Fictitious crack propagation in fiber-reinforced concrete beams", J. Eng. Mech., 127(3), 272-280.   DOI
32 Ostergaard, L., Walter, R. and Olesen, J.F. (2005). "Method for determination of tensile properties of engineered cementitious composites (ECC)", Construction Materials: Proceedings of ConMat'05 and Mindess Symposium, 74.
33 Pedersen, C. (1996). "New production process, materials and calculation tecniques for fiber reinforced concrete pipes", PhD Thesis, Department of Structural Engineering and Materials.
34 Baby, F., Graybeal, B., Marchand, P. and Toutlemonde, F. (2013). "UHPFRC tensile behavior characterization: Inverse analysis of four-point bending test results", Mater. Struct., Mater. Constr., 46(8), 1337-1354.   DOI
35 Pyo, S. and El-Tawil, S. (2015). "Capturing the strain hardening and softening responses of cementitious composites subjected to impact loading", Constr. Build. Mater., 81, 276-283.   DOI
36 Pyo, S., El-Tawil, S. and Naaman, A.E. (2016). "Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates", Cement Concrete Res., 88, 144-156.   DOI
37 Pyo, S., Wille, K., El-Tawil, S. and Naaman, A.E. (2015). "Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension", Cement Concrete Compos., 56, 15-24.   DOI
38 Qian, S. and Li, V.C. (2007). "Simplified inverse method for determining the tensile strain capacity of strain hardening cementitious composites", J. Adv. Concrete Technol., 5(2), 235-246.   DOI
39 Abrishambaf, A., Pimentel, M. and Nunes, S. (2017). "Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites", Cement Concrete Res., 97, 28-40.   DOI
40 Baby, F., Graybeal, B., Marchand, P. and Toutlemonde, F. (2012). "Proposed flexural test method and associated inverse analysis for ultra-high-performance fiber-reinforced concrete", ACI Mater. J., 109(5), 545-555.
41 Casanova, P. and Rossi, P. (1996). "Analysis of metallic fibrereinforced concrete beams submitted to bending", Mater. Struct., 29(6), 354-361.   DOI
42 DIANA (Software). (2017). "User's Manual-Release 10.2", TNO DIANA, The Netherlands, https://dianafea.com/manuals/d102/Diana.html.
43 Graybeal, B. and Baby, F. (2013). "Development of direct tension test method for ultra-high-performance fiber-reinforced concrete", ACI Mater. J., 110(110), 177-186.
44 Kanakubo, T. (2006). "Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites", J. Adv. Concrete Technol., 4(1), 3-17.   DOI
45 Grtiger, J., Tue, N.V. and Wille, K. (2012). "Bending Behaviour and Variation of Flexural Parameters of UHPFRC", 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel University Press GmbH, 419-426.
46 Guo, W., Fan, W., Shao, X., Shen, D. and Chen, B. (2018). "Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations", Compos. Struct., 185, 307-326.   DOI
47 Jirasek, M. (2017). "Modeling of localized inelastic deformation", Short Course Given by Prof. M. Jirasek at Czech Technical University, 18-22/09/2017, Prague, September, 0-373.