• Title/Summary/Keyword: fiber etching

Search Result 80, Processing Time 0.03 seconds

Highly sensitive temperature sensor based on etched fiber with thermally expanded core (식각된 열확산 코어 광섬유를 이용한 고감도 온도 센서)

  • Kim, Kwang-Taek;Song, Hyun-Suk;Shin, Eun-Soo;Hong, Ki-Bum
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.263-268
    • /
    • 2006
  • We have demonstrated a highly sensitive temperature sensor using an etched single mode fiber with a thermally expanded core region. Large core size of thermally expanded core facilitates access to evanescent wave by the wet etching. The etched region was surrounded by a low dispersive external medium with high thermo-optic coefficient. Due to the large difference between the dispersion property of the fiber and that of the external medium, the device reveals a cut-off properties at spectral region. The cut-off wavelength was shifted by the variations of the environmental temperatures because of thermo-optic effect of the external medium. The sensitivity of the fabricated device was found to be $45nm/^{\circ}C$.

Effect of surface etching and ultrafine fibers on sound absorption characteristics

  • Lee, Yun-Eung;Seon, Choe-Hwa;Su, Baek-Mun;Hwan, Ju-Chang
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.406-409
    • /
    • 1998
  • Sound absorbing materials are divided into several types according to the appearances and the characteristics. Basic mechanism of sound absorption in various sound absorbing materials is the conversion of sound energy into hat energy. Here the important elements which govern by the conversion from sound into heat depend on the type of materials. (omitted)

  • PDF

Mechanical Properties of Unidirectional Carbon-carbon Composites as a Function of Fiber Volume Content

  • Dhakate, S.R.;Mathur, R.B.;Dham, T.L.
    • Carbon letters
    • /
    • v.3 no.3
    • /
    • pp.127-132
    • /
    • 2002
  • Unidirectional polymer composites were prepared using high-strength carbon fibers as reinforcement and phenolic resin as matrix precursor with keeping fiber volume fraction at 30, 40, 50 and 60% respectively. These composites were carbonized at $1000^{\circ}C$ and graphitised at $2600^{\circ}C$ in the inert atmosphere. The carbonized and graphitised composites were characterized for mechanical properties as well as microstructure. Microscopic studies were carried out of the polished surface of carbonized and graphitised composites after etching by chromic acid, to understand the effect of fiber volume fraction on oxidation at fiber-matrix interface. It is found that the flexural strength in polymer composites increases with fiber volume fraction and so does for the carbonised composites. However, the trend was found to be reversed in graphitised composites. In all the carbonized composites anisotropic region has been observed at fiber-matrix interface which transforms into columnar type microstructure upon graphitisation. The extension of strong and weak columnar type microstructure is function of fiber volume fraction. SEM microscopy of the etched surface of the sample reveal that composites containing 40% fiber volume has minimum oxidation at the interface, revealing a strong interfacial bonding.

  • PDF

The formation of Si V-groove for optical fiber alignment in optoelectronic devices (광전소자 패키징에서 광섬유 정렬을 위한 Si V-groove 형성)

  • 유영석;김영호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.65-71
    • /
    • 1999
  • The effects of mask materials and etching solutions on the dimensional accuracy of V-groove were studied for the alignment between optoelectronic devices and optical fibers in optical packaging. PECVD nitride, LPCVD nitride, or thermal oxide($SiO_2$) was used as a mask material. The anisotropic etching solution was KOH(40wt%) or the mixture of KOH and IPA. LPCVB nitride has the best etching selectivity and thermal oxide was etched most rapidly in KOH(40wt%) at $85^{\circ}C$ among the mask materials studied here. The V-groove size enlarged than the designed value. This phenomenon was due to the undercutting benearth the mask layer from the etching toward Si (111) plane. The etch rate of (111) plane wart 0.034 - 0.037 $\mu\textrm{m}$/min in KOH(40wt%). This rate was almost same regardless of mask materials. When IPA added to KOH(40wt%), the etch rate of (100) plane and (111) plane decreased, but etching ratio of (100) to (111) plane increased. Consequently, the undercutting phenomenon due to etching toward (111) plane decreased and the size of V-groove could be controlled more accurately.

  • PDF

Double-Side Notched Long-Period Fiber Gratings fabricated by Using an Inductively Coupled Plasma for Force Sensing

  • Fang, Yu-Lin;Huang, Tzu-Hsuan;Chiang, Chia-Chin;Wu, Chao-Wei
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1399-1404
    • /
    • 2018
  • This study used an inductively coupled plasma (ICP) dry etching process with a metal amplitude mask to fabricate a double-side notched long-period fiber grating (DNLPFG) for loading sensing. The DNLPFG exhibited increasing resonance attenuation loss for a particular wavelength when subjected to loading. When the DNLPFG was subjected to force loading, the transmission spectra were changed, showing a with wavelength shift and resonance attenuation loss. The experimental results showed that the resonant dip of the DNLPFG increased with increasing loading. The maximum resonant dip of the $40-{\mu}m$ DNLPFG sensor was -26.522 dB under 0.049-N loading, and the largest force sensitivity was -436.664 dB/N. The results demonstrate that the proposed DNLPFG has potential for force sensing applications.

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF

Fabrication and Characterization of a Pressure Sensor using a Pitch-based Carbon Fiber (탄소섬유를 이용한 압력센터 제작 및 특성평가)

  • Park, Chang-Sin;Lee, Dong-Weon;Kang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.417-424
    • /
    • 2007
  • This paper reports fabrication and characterization of a pressure sensor using a pitch-based carbon fiber. Pitch-based carbon fibers have been shown to exhibit the piezoresistive effect, in which the electric resistance of the carbon fiber changes under mechanical deformation. The main structure of pressure sensors was built by performing backside etching on a SOI wafer and creating a suspended square membrane on the front side. An AC electric field which causes dielectrophoresis was used for the alignment and deposition of a carbon fiber across the microscale gap between two electrodes on the membrane. The fabricated pressure sensors were tested by applying static pressure to the membrane and measuring the resistance change of the carbon fiber. The resistance change of carbon fibers clearly shows linear response to the applied pressure and the calculated sensitivities of pressure sensors are $0.25{\sim}0.35 and 61.8 ${\Omega}/k{\Omega}{\cdot}bar$ for thicker and thinner membrane, respectively. All these observations demonstrated the possibilities of carbon fiber-based pressure sensors.

Electrically Controllable Fiber Bragg Gratings with Liquid Crystal Cladding

  • Baek Seungin;Roh Sookyoung;Na Jun-Hee;Kwon Jaejoong;Yoon Ilyong;Chung Seunghwan;Jeong Cherlhyun;Lee Sin-Doo;Lee Byoungho;Jeong Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.123-128
    • /
    • 2005
  • An electrically controllable fiber Bragg grating inscribed in a hydrogen-loaded standard single-mode fiber with liquid-crystal cladding is presented. Control of the optic axis of liquid crystals by means of external electric fields results in the change of reflectivity and Bragg wavelength of the grating. The increase of surrounding refractive index of a fiber makes effective refractive index of a propagation mode higher, which results in high field confinement and longer Bragg wavelength. The reduction of the fiber diameter by chemical etching process improves the long-range ordering of liquid-crystal molecules and reduces controlling voltage. The tunable ranges of reflectivity and Bragg wavelength of the liquid crystal-cladding fiber Bragg grating were $\~4.6dB\;and\;\~0.3nm$, respectively.

Fabrication of All-fiber 7x1 Pump Combiner Based on a Fiber Chip for High Power Fiber Lasers (고출력 광섬유 레이저를 위한 광섬유 칩 기반 All-fiber 7x1 펌프 광 결합기 제작)

  • Choi, In Seok;Jeon, Min Yong;Seo, Hong-Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.135-140
    • /
    • 2017
  • In this paper, we report measured results for an all-fiber $7{\times}1$ pump combiner based on an optical fiber chip for high-power fiber lasers. An optical-fiber chip was fabricated by etching a fiber, having core and cladding diameters of 20 and $400{\mu}m$, in the longitudinal direction. To both ends of the etched chip, we spliced input and output fibers. First, we tied together seven optical fibers, having core and cladding diameters of 105 and $125{\mu}m$ respectively, in a cylindrical bundle and spliced them to the $375-{\mu}m$ end of the optical-fiber chip. Then, we attached an output DCF with core and cladding diameters of 25 and $250{\mu}m$ to the $250-{\mu}m$ end of the optical-fiber chip. Finally, the fabricated $7{\times}1$ pump combiner showed an average optical coupling efficiency of about 90.2% per port. This chip-based pump combiner may replace conventional pump combiners by massive production of fiber chips.