DOI QR코드

DOI QR Code

Double-Side Notched Long-Period Fiber Gratings fabricated by Using an Inductively Coupled Plasma for Force Sensing

  • Fang, Yu-Lin (Department of Mechanical Engineering, National Kaohsiung University of Science and Technology) ;
  • Huang, Tzu-Hsuan (Department of Mechanical Engineering, National Kaohsiung University of Science and Technology) ;
  • Chiang, Chia-Chin (Department of Mechanical Engineering, National Kaohsiung University of Science and Technology) ;
  • Wu, Chao-Wei (Department of Aeronautical and Mechanical Engineering, Republic of China Air Force Academy)
  • Received : 2018.02.27
  • Accepted : 2018.07.06
  • Published : 2018.11.15

Abstract

This study used an inductively coupled plasma (ICP) dry etching process with a metal amplitude mask to fabricate a double-side notched long-period fiber grating (DNLPFG) for loading sensing. The DNLPFG exhibited increasing resonance attenuation loss for a particular wavelength when subjected to loading. When the DNLPFG was subjected to force loading, the transmission spectra were changed, showing a with wavelength shift and resonance attenuation loss. The experimental results showed that the resonant dip of the DNLPFG increased with increasing loading. The maximum resonant dip of the $40-{\mu}m$ DNLPFG sensor was -26.522 dB under 0.049-N loading, and the largest force sensitivity was -436.664 dB/N. The results demonstrate that the proposed DNLPFG has potential for force sensing applications.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology, Taiwan

References

  1. C. L. Lee, Z. Y. Weng, C. J. Lin and Y. Lin, Opt. Lett. 35, 4172 (2010). https://doi.org/10.1364/OL.35.004172
  2. M. Kheiri, M. I. Zibaii, J. Sadeghi and H. Latifi, Comm. Phot. C Exh. Acp. (2011), p. 1.
  3. F. Ahmed, M. S. Ahsan, M. S. Lee and M. B. G. Jun, Proc. SPIE 8607, 86071L (2013).
  4. A. A. Kazemi and A. Ishihara, in Proc. SPIE (2014), p. 9202.
  5. M. Dfi. Petrovic, J. Petrovic, A. Danicic, M. Vukcevic, B. Bojovic, Lj. Hadzievski, T. Allsop, G. Lloyd and D. J. Webb, Biomed., Opt. Express 5, 1136 (2014). https://doi.org/10.1364/BOE.5.001136
  6. S. Bandyopadhyay, I. Del Villar, N. Basumallick, P. Biswas, T. K. Dey and S. Bandyopdhayay, J. Lightwave Technol. 36, 1178 (2017).
  7. H. Kim, J. Bae, J. W. Lee, J. Chun and S. B. Lee, Jpn. J. Appl. Phys. 42, 5098 (2003). https://doi.org/10.1143/JJAP.42.5098
  8. W. Shin, K. Oh, B. A. Yu, Y. L. Lee, Y. C. Noh, D. K. Ko and J. Lee, IEEE Photonic Tech. Lett. 20, 6 (2008). https://doi.org/10.1109/LPT.2007.910621
  9. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano and C. R. Davidson, Opt. Lett. 21, 336 (1996). https://doi.org/10.1364/OL.21.000336
  10. P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco and A. M. Vengsarkar, IEEE Photon. Tech. Lett. 9, 1343 (1997). https://doi.org/10.1109/68.623257
  11. I. B. Sohn, N. K. Lee, H. W. Kwon and J. W. Song, Opt. Eng. 41, 1465 (2002). https://doi.org/10.1117/1.1481899
  12. M. Harurnoto, M. Shigehara and H. Suganurna, J. Light-wave Technol. 20, 1027 (2002). https://doi.org/10.1109/JLT.2002.1018814
  13. J. K. Bae, S. H. Kim, J. H. Kim, J. Bae, S. B. Lee and J. M. Jeong, IEEE Photon. Tech. Lett. 15, 407 (2003). https://doi.org/10.1109/LPT.2002.807955
  14. L. Qi, C. L. Zhao, J. Yuan, M. Ye, J. Wang, Z. Zhang and S. Jin, Sens. Actuat. B-Chem. 193, 185 (2014). https://doi.org/10.1016/j.snb.2013.11.063
  15. L. Coelho, D. Viegas, J. L. Santos and J. M. M. M. de Almeida, Sens. Actuators B 202, 929 (2014). https://doi.org/10.1016/j.snb.2014.06.035
  16. G. Quero, S. Zuppolini, M. Consales, L. Diodato, P. Vaiano, A. Venturelli, M. Santucci, F. Spyrakis, M. P. Costi, M. Giordano, A. Borriello, A. Cutolo and A. Cusano, Sensor Actuat. B-Chem. 230, 510 (2016). https://doi.org/10.1016/j.snb.2016.02.086
  17. Y. C. Tan, W. B. Ji, V. Mamidala, K. K. Chow and S. C. Tjin, Sens. Actuators B 196, 260 (2014). https://doi.org/10.1016/j.snb.2014.01.063
  18. A. Singh, D. Engles, A. Sharma and M. Singh, Optik 125, 457 (2014). https://doi.org/10.1016/j.ijleo.2013.06.037
  19. X. Wei, T. Wei, J. Li, X. Lan, H. Xiao and Y. S. Lin, Sens. Actuat. B 144, 260 (2010). https://doi.org/10.1016/j.snb.2009.10.069
  20. V. Bhatia, D. Campbell, R. O. Claus and A. M. Vengsarkar, Opt. Lett. 22, 648 (1997). https://doi.org/10.1364/OL.22.000648
  21. V. Bhatia, Opt. Express 4, 457 (1999). https://doi.org/10.1364/OE.4.000457
  22. T. Geng, S. Geng, W. Yang, T. Ye, Z. Liu and R. Xue, in 7th Int. Symp. Advanced Optical Manufacturing and Testing Technologies (AOMATT 2014) (2014), p. 928228.
  23. Y. P. Wang, L. Xiao, D. Wang and W. Jin, Opt. Lett. 31, 3414 (2006). https://doi.org/10.1364/OL.31.003414
  24. R. Garg, S.M. Tripathi, K. Thyagarajan and W. J. Bock, Sensor Actuat. B-Chem. 176, 1121 (2013). https://doi.org/10.1016/j.snb.2012.08.059
  25. K. P. Lor, Q. Liu and K. S. Chiang, IEEE Photon. Tech. Lett. 17, 594 (2005). https://doi.org/10.1109/LPT.2004.840918
  26. Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu and Y. J. Rao, J. Lightwave Technol. 27, 857 (2009). https://doi.org/10.1109/JLT.2008.927754
  27. H. Kumazaki, Y. Yamada, T. Oshima, S. Inaba and K. Hane, Microprocesses and Nanotechnology Conference Tokyo, Japan (IEEE Cat. No. 00EX387) (2000), p. 154.
  28. M. Vaziri, C. L. Chen and A. Cusano, J. Lightwave Technol. 10, 6 (2011).
  29. W. Ding and S. Andrews, Opt. Lett. 33, 717 (2008). https://doi.org/10.1364/OL.33.000717
  30. C. C. Chiang and L. Tsai, Opt. Lett. 37, 193 (2012). https://doi.org/10.1364/OL.37.000193
  31. Y. C. Chang, J. W. Wu and C. C. Chiang, Jpn. J. Appl. Phys 54, 6S1 (2015).
  32. K. P. Ma, C. W. Wu, T. S. Hsieh, M. Y. Hsieh and C. C. Chiang, Micromachines 7, 8 (2016). https://doi.org/10.3390/mi7010008
  33. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997). https://doi.org/10.1109/50.618322