• Title/Summary/Keyword: fiber drawing

Search Result 119, Processing Time 0.027 seconds

Enhancing ductility in carbon fiber reinforced polymer concrete sections: A multi-scale investigation

  • Moab Maidi;Gili Lifshitz Sherzer;Erez Gal
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.385-398
    • /
    • 2024
  • As concrete dominates the construction industry, alternatives to traditionally used steel reinforcement are being sought. This study explored the suitability of carbon fiber-reinforced polymer (CFRP) as a substitute within rigid frames, focusing on its impact on section ductility and overall structural durability against seismic events. However, current design guidelines address quasi-static loads, leaving a gap for dynamic or extreme circumstances. Our approach included multiscale simulations, parametric study, and energy dissipation analyses, drawing upon a unique adaptation of modified compression field theory. In our efforts to optimize macro and microparameters to improve yield strength, manage brittleness, and govern failure modes, we also recognized the potential of CFRP's high corrosion resistance. This characteristic of CFRP could significantly reduce the frequency of required repairs, thereby contributing to enhanced durability of the structures. The research reveals that CFRP's durability and seismic resistance are attributed to plastic joints within compressed fibers. Notably, CFRP can impart ductility to structural designs, effectively balancing its inherent brittleness, particularly when integrated with quasi-brittle materials. This research challenges the notion that designing bendable components with carbon fiber reinforcement is impractical. It shows that creating ductile bending components with CFRP in concrete is feasible despite the material's brittleness. This funding overturns conventional assumptions and opens new avenues for using CFRP in structural applications where ductility and resilience are crucial.

Study on the Novel Fabrication Method of Highly Birefringent Photonic Crystal Fiber (새로운 구조의 큰 복 굴절을 가진 광자결정 광섬유의 제작에 관한 연구)

  • Ma, Kyung-Sik;Kim, Gil-Hwan;Hwang, Kyu-Jin;Eom, Sung-Hoon;Lee, Kwan-Il;Jung, Je-Myung;Lee, Sang-Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.6
    • /
    • pp.235-240
    • /
    • 2010
  • We fabricate highly birefringent photonic crystal fiber with new structure using a stack and draw method. Fabricated fiber has two big air holes, one at each side of the outside air cladding region, leading to core ellipticity during the drawing process. Birefringence of the fabricated Hi-Bi PCF is measured to be $2.29{\times}10^{-4}$ (at 1550 nm).

The Strengthening Effects of Concrete Columns Confined with Carbon Fiber Sheets along the Fiber Direction (탄소섬유쉬트 올방향에 따른 콘크리트 기둥 보강성능)

  • Kim, Yang-Jung;Hong, Gap-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.326-332
    • /
    • 2011
  • Carbon, Aramid, Boron and Glass fibers are used as fibrous materials to promote structural bearing strength. Of these fiber types, carbon fiber is the most commonly used material, and is characterized by having a one-way direction, which is strengthened by tensile strength due to the attached direction only, while other types of fibers are two-way. Therefore, when applied in the field, the attachment direction of fiber is a very important factor. However, when fiber direction is not mentioned in the design drawing, there sometimes is no improvement in structural strength, as the fiber is being installed by a site engineer or workers who lack structural knowledge. The purpose of this study was to propose an optimal direction of carbon fiber through a comparison & analysis of reinforcing efficiency with reinforced experimental columns that used carbon fibers in each of the inclined, horizontal and vertical directions. According to the results, horizontal direction in the reinforced column was improved by 153.43%, but vertical direction was 104.61% only, and it was understood this was due to increased tensile strength along the fiber direction. For this reason, it is necessary to include information regarding fiber direction in design and site management.

Effect of Plastic Deformation and Annealing Process Parameters on Strength and Electrical Conductivity of Cu-Fe Alloys (Cu-Fe 합금에서 소성변형과 어닐링 공정조건이 인장강도와 전기전도도에 미치는 영향)

  • Woo, Chang-Jun;Park, Hyun Gyoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.3
    • /
    • pp.107-112
    • /
    • 2019
  • In order to investigate the effect of plastic deformation and annealing process parameters on strength and electrical conductivity of Cu-Fe alloys, Cu-10wt%Fe, Cu-15wt%Fe alloys were drawn up to ${\eta}=4$ and annealed in the temperature range of $300^{\circ}C$ to $700^{\circ}C$, followed by measurements of tensile strength and electric conductivity. As draw strain increases, tensile strength increases while electrical conductivity decreases. These observations result from reduction of dislocation density and decrease in Fe fiber spacing. Raising annealing temperature brought about decrease of tensile strength and increase of electrical conductivity up to $500^{\circ}C$, being followed by decreasing above $500^{\circ}C$. Such results are thought to be caused by decrease of dislocation density below $500^{\circ}C$ and rapid solubility increase of Fe in Cu above $500^{\circ}C$. For the purpose of obtaining both high strength and high conductivity, annealing process should be incorporated just prior to reaching to final draw strain. For Cu-10wt%Fe alloy, the tensile strength 706.9 MPa and the electrical conductivity 54.34%IACS were obtained through the processes of drawing up to ${\eta}=3$, annealing at $500^{\circ}C$ for 1 hour and additional drawing up to total strain of ${\eta}=4$.

Study on the temperature and optical wavelength sensing composites as smart materials (온도 및 광파장을 감지하는 스마트 복합재료에 관한 연구)

  • ;Delbert E. Day;James O. Stoffer
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.439-448
    • /
    • 1996
  • The possibility of application or the transparent BK10 glass fiber/PMMA composites as a temperature-or wavelength-sensors was studied. Measurement of diameter and refractive index for glass fibers to be reinforced to PMMA as a function of drawing speed and temperature was done and the appropriate coating methods and solvent for coupling agent was researched. $T_{max%}$ value at which the maximum transmission for the composites occurs could be controlled to be in $31~50^{\circ}C$ by the processing factors such as fiber diameter, fiber vol%, molecular wt. of PMMA. Furthermore, with different wavelength other than 589.3 nm, the $T_{max%}$ value could be controlled to be in $35~55^{\circ}C$. For the sensibility of wavelength for the composites, there was not a wavelength ($\lamda_{max%}$) showing maximum transmission.

  • PDF

Optical Properties of Plastic Fiber Made from a Transparent Polymethylmethacrylate (투명한 PMMA 로 된 플라스틱 섬유의 광학적 성질)

  • Hee-Ju Chae;Yasuhiro Koike
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.431-435
    • /
    • 1989
  • The refractive index, refractive-index distribution, birefringence, and the attenuation of the plastic fiber prepared from the transparent PMMA prerod were measured in accordance with continuous heat drawing temperature($T_d$). The refractive indices were decreased with $T_d$ elevation but the refractive-index distribution from the center of fiber to periphery was higher at lower $T_d$. The steep decrease of gradient index was only at the periphery of higher $T_d$. Birefringence was observed only below $220^{\circ}C$ and ranged $5{\times}10^{-4}$ to $6{\times}10^{-4}$. No birefringence was observed above $220^{\circ}C$. An elevation of $T_d$ brought about a monotonous decrease in the attenuation of the fiber.

  • PDF

The Effect of Coagulant and Molecular Weight on the Wet Spinnability of Regenerated Silk Fibroin solution

  • Yoo, Young-Jin;Kim, Ung-Jin;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.1
    • /
    • pp.145-150
    • /
    • 2010
  • The regenerated silk fibroin with various molecular weights (MW) was prepared by different dissolution condition and the effect of coagulant on the wet spinnability of the various MW silk fibroin solutions dissolved in formic acid was investigated by the observation of wet spun filament in coagulant and the measurement of maximum draw ratio. The observation on the wet spun filament in coagulation bath revealed that good fibers without bead were formed in a high MW and a very high MW silk fibroin samples. In contrast, beads were observed in the silk fibroin sample with medium MW. The maximum draw ratio of wet spun silk fibroin filament decreased with MW reduction. The decrease of maximum draw ratio in isopropanol, acetone, DMF and THF was remarkably higher than that in methanol and ethanol, indicating that the coagulant type strongly influenced the wet spinnability. The two simple evaluation methods used in this study showed complementary information for wet spinnability: (a) The observation of filament in coagulant was effective to check a continuous fiber formation and a bead formation, and (b) the maximum draw ratio measurement was useful to examine the post drawing ability related to molecular orientation.

Influence of Texture on the Tensile Properties in AZ31 Magnesium Alloy (AZ31 마그네슘합금의 집합조직에 따른 인장특성)

  • Park, No-Jin;Hwang, Joong-Ho;Roh, Jae-Seung
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Magnesium alloys are drawing a lot of attention and have been extensively studied. The major obstacle to the practical application of the alloys is the poor formability at room temperature, originating basically from the insufficient number of slip system. Development of a proper texture is one promising solution to improve the formability. In the present work, after extrusion and full annealing, microstructures, texture developments and tensile properties of AZ31 Mg alloys are studied. After full annealing strong <1010>||ED fiber texture and weak <1120>+<1230>||ED fiber texture (c-axes in the radial direction) were developed. The textures are distinctly influencing the tensile properties, which can be understood in terms of the activation of basal slip modes. With the random orientation, which is developed in the $45^{\circ}$ sample to the extrusion direction, the better workability can be achieved at room temperature.

Investigation of Properties of the PET Film Dependent on the Biaxial Stretching (PET 필름의 이축연신에 따른 물성변화 연구)

  • Lee, Jung-Gyu;Park, Sang-Ho;Kim, Seong-Hun
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.579-587
    • /
    • 2010
  • To investigate the properties of PET films, PET films were extruded at various temperature above $T_m$ and quenched at $18^{\circ}C$ for amorphous sheet, and stretched along a direction defined as the machine direction (MD) with a transverse direction (TD) above $T_g$ at various stretching ratios and then annealed at various temperatures produced by SKC PET line. Thermal shrinkage of MD and TD increased with decreasing annealing temperature and extruding temperature, and increasing stretching ratio. The degree of crystallinity, density, heat of fusion (${\Delta}H$) and pre-melting point ($T_m'$) increased with increasing annealing temperature and extruding temperature. Number average molecular weight ($M_n$) and intrinsic viscosity decreased with increasing extruding temperature. Tensile strength and modulus increased with increasing stretching ratio, however decreased with increasing annealing temperature. Reflective index of both stretching and thickness direction increased with increasing stretching ratio and annealing temperature.

Performance Evaluation of Structure Strengthening Using Sprayed FRP Technique (분사식 FRP공법을 이용한 구조물 보강 성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.126-136
    • /
    • 2009
  • The sprayed FRP strengthening technique is combining the Glass fiber and Polyester resin in open air and spraying randomly at concrete's surface with high-speed compressed air. Then it strengthens the structures with a new technique evaluated the structural performance. We applied it to concrete beam and tested for flexural strength, depended on Korea Standard(KS F 2408). Then based on the result of flexural strength, the properties were proposed that applying to structures. Based on the experiment, we have evaluated structural performance by the experiment. 1/5 scale prestressed concrete I-beam were made by Korean Highway's typical drawing in 1993. With these test results, 49.8% increased in flexural strength, improvement of the behavior of serviceability state, and strengthening was surely effective for controlling deflection and crack of structure. Consequently, it can be summarized that Sprayed FRP technique has prospect to improve the performance of structure.