Browse > Article

Investigation of Properties of the PET Film Dependent on the Biaxial Stretching  

Lee, Jung-Gyu (Department of Fiber and Polymer Engineering, College of Engineering, Hanynang University)
Park, Sang-Ho (Department of Fiber and Polymer Engineering, College of Engineering, Hanynang University)
Kim, Seong-Hun (Department of Fiber and Polymer Engineering, College of Engineering, Hanynang University)
Publication Information
Polymer(Korea) / v.34, no.6, 2010 , pp. 579-587 More about this Journal
Abstract
To investigate the properties of PET films, PET films were extruded at various temperature above $T_m$ and quenched at $18^{\circ}C$ for amorphous sheet, and stretched along a direction defined as the machine direction (MD) with a transverse direction (TD) above $T_g$ at various stretching ratios and then annealed at various temperatures produced by SKC PET line. Thermal shrinkage of MD and TD increased with decreasing annealing temperature and extruding temperature, and increasing stretching ratio. The degree of crystallinity, density, heat of fusion (${\Delta}H$) and pre-melting point ($T_m) increased with increasing annealing temperature and extruding temperature. Number average molecular weight ($M_n$) and intrinsic viscosity decreased with increasing extruding temperature. Tensile strength and modulus increased with increasing stretching ratio, however decreased with increasing annealing temperature. Reflective index of both stretching and thickness direction increased with increasing stretching ratio and annealing temperature.
Keywords
PET; film; drawing; stretching;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. M. Gohil, J. Appl. Polym. Sci., 48, 1635 (1993).   DOI   ScienceOn
2 V. B. Gupta and S. Kumar, J. Appl. Polym. Sci., 26, 1896 (1981).
3 D. H. Chang, J. Korean Soc. Text. Eng. Chem., 20, 37 (1983).
4 R. M. Gohil, J. Appl. Polym. Sci., 48, 1649 (1993).   DOI   ScienceOn
5 R. M. Gohil and D. R. Salem J. Appl. Polym. Sci., 47, 1989 (1993).   DOI
6 R. M. Gohil, J. Appl. Polym. Sci., 52, 925 (1994).   DOI   ScienceOn
7 M. V. S. Rao, R. Kumar, and N. E. Dweits, J. Appl. Polym. Sci., 32, 4439 (1986).   DOI   ScienceOn
8 D. H. Chang, J. Korean Soc. Text. Eng. Chem., 20, 37 (1983).
9 D. H. Chang, J. M. Schultz, and R. M. Gohil, J. Macromol. Sci. Phys., B32, 99 (1992).
10 K. G. Lee and J. M. Schultz, Polymer, 34, 4455 (1993).   DOI   ScienceOn
11 D. H. Chang, K. G. Lee, and J. M. Schultz, J. Macromol. Sci. Phys., B33, 105 (1993).
12 J. H. Dumbleton and B. B. Bowels, J. Polym. Sci. A-2, 4, 51 (1966).
13 K. K. Mocherla and J. P. Bell, J. Polym. Sci.: Polym. Phys. Ed., 11, 1779 (1973).
14 G. Groeninckx, H. Reynaeers, H. Berghmans, and G. Smets, J. Polym. Sci.: Polym. Phys. Ed., 18, 1311 (1980).   DOI
15 G. P. Andarianova, B. A. Arutyunor, and Y. V. Popov, J. Polym. Sci.: Polym. Phys. Ed., 16, 1139 (1978).   DOI   ScienceOn
16 N. V. Bhat and S. G. Naik, Textile Res. J., 54, 868 (1984).   DOI   ScienceOn
17 A. Ribnick, Textile Res. J., 39, 428 (1969).   DOI
18 G. Groeninckx, H. Reynaeers, H. Berghmans, and G. Smets, J. Polym. Sci.: Polym. Phys. Ed., 18, 1325 (1980).   DOI
19 V. B. Gupta and S. Kumar, J. Appl. Polym. Sci., 26, 1865 (1981).   DOI   ScienceOn
20 V. B. Gupta and S. Kumar, J. Appl. Polym. Sci., 26, 1878 (1981).
21 V. B. Gupta and S. Kumar, J. Appl. Polym. Sci., 26, 1885 (1981).   DOI   ScienceOn