Browse > Article
http://dx.doi.org/10.12656/jksht.2019.32.3.107

Effect of Plastic Deformation and Annealing Process Parameters on Strength and Electrical Conductivity of Cu-Fe Alloys  

Woo, Chang-Jun (Department of Advanced Materials Engineering, Korea Polytechnic University)
Park, Hyun Gyoon (Department of Advanced Materials Engineering, Korea Polytechnic University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.32, no.3, 2019 , pp. 107-112 More about this Journal
Abstract
In order to investigate the effect of plastic deformation and annealing process parameters on strength and electrical conductivity of Cu-Fe alloys, Cu-10wt%Fe, Cu-15wt%Fe alloys were drawn up to ${\eta}=4$ and annealed in the temperature range of $300^{\circ}C$ to $700^{\circ}C$, followed by measurements of tensile strength and electric conductivity. As draw strain increases, tensile strength increases while electrical conductivity decreases. These observations result from reduction of dislocation density and decrease in Fe fiber spacing. Raising annealing temperature brought about decrease of tensile strength and increase of electrical conductivity up to $500^{\circ}C$, being followed by decreasing above $500^{\circ}C$. Such results are thought to be caused by decrease of dislocation density below $500^{\circ}C$ and rapid solubility increase of Fe in Cu above $500^{\circ}C$. For the purpose of obtaining both high strength and high conductivity, annealing process should be incorporated just prior to reaching to final draw strain. For Cu-10wt%Fe alloy, the tensile strength 706.9 MPa and the electrical conductivity 54.34%IACS were obtained through the processes of drawing up to ${\eta}=3$, annealing at $500^{\circ}C$ for 1 hour and additional drawing up to total strain of ${\eta}=4$.
Keywords
Cu-Fe alloys; Drawing strain; Annealing; Tensile strength; Electrical conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. M. Berge, G. R. Haupt, E. D. Gibson and J. D. Verhoeven : Wire Journal International (1991) 62.
2 김창주, 이정무, "기계와 재료" 6 (1994) 89.
3 M. J. Tenwick and H. A. Davies : Mater. Sci. Eng, 35 (1988)543.
4 D. G. Morris and M. A. Morris : Acta Metall, Mater, 39 (1991) 1763.   DOI
5 M. Holscher, D. Raabe and K. Lucke : Acta Metall. Mater, 42 (1994) 879.   DOI
6 D. A. Hardwick, C. G. Rhodes and L. G. Fritzemeier : Metall. Trans., 27A (1993) 27.
7 W. A. Spitzig, H. L. Downing, F. C. Laabs, E. D. Gibson, J. D. Verhoeven : Metall, Trans, 24A (1993) 7.
8 P. D. Funkenbusch, T. H. Courtney : Scripta Metall 15 (1981) 1349.   DOI
9 M. J. Dianez, E. Donoso, M. J. Sayagues, A. Perejon, P. E. Sanchez-Jimenez, L. A. Perez-Maqueda and J. M. Criado : J. Alloy Compd. 688 (2016) 288.   DOI
10 H. Fernee, J. Nairn and A. Atrens : J. Mater.
11 Y. N. Zhang, J. L. Zi, M. S. Zheng and J. W. Zhu : J. Alloy Compd. 462 (2008).
12 J. Eckert, J. C. Holzer, C. E. Krill and W. J. Johnson : J. Appl. Phys. 73 (1993) 2794.   DOI
13 E. Ma, M. Atzmon and F. E. Pinkerton : J. Appl. Phys. 74 (1993) 955.   DOI
14 P. Bellon and R. S. Averback : Phys. Rev. Lett. 74 (1995) 1819.   DOI
15 Z. J. Zhang, O. Jin and B. X. Liu : Phys. Rev.
16 O. Jin, Z. J. Zhang and B. X. Liu : Appl. Phys. Lett. 67 (1995) pp.1524.   DOI
17 O. Drbohlav and A. R. Yavari : Acta Metall. Mater. 43 (1995) 1799.   DOI
18 A. R. Miedema : Philips Tech. Rev. 36 (1976) 217.
19 김병일, 배차헌, 이지환, 이정중, '비철금속재료', 원창출판사 (1993).
20 William F. Smith저, 김진천, 방재철 역 : "materials science and engineering", 사이텍 미디어(2005).
21 D. A. Hardwick, C. G. Rhodes and L. G. Fritzemeier : Sci. 36 (2001) 2711.
22 D. A. Hardwick, C. G. Rhodes and L. G. Fritzemeier : Metall. Trans., B 51 (1995) 8076.
23 W. A. Spitzig, H. L. Downing, F. C. Laabs, E. D. Gibson and J. D. Verhoeven : Metall, Trans, 24A (1993) 7.