DOI QR코드

DOI QR Code

Effect of Plastic Deformation and Annealing Process Parameters on Strength and Electrical Conductivity of Cu-Fe Alloys

Cu-Fe 합금에서 소성변형과 어닐링 공정조건이 인장강도와 전기전도도에 미치는 영향

  • Woo, Chang-Jun (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Park, Hyun Gyoon (Department of Advanced Materials Engineering, Korea Polytechnic University)
  • 우창준 (한국산업기술대학교 신소재공학과) ;
  • 박현균 (한국산업기술대학교 신소재공학과)
  • Received : 2019.04.23
  • Accepted : 2019.05.16
  • Published : 2019.05.30

Abstract

In order to investigate the effect of plastic deformation and annealing process parameters on strength and electrical conductivity of Cu-Fe alloys, Cu-10wt%Fe, Cu-15wt%Fe alloys were drawn up to ${\eta}=4$ and annealed in the temperature range of $300^{\circ}C$ to $700^{\circ}C$, followed by measurements of tensile strength and electric conductivity. As draw strain increases, tensile strength increases while electrical conductivity decreases. These observations result from reduction of dislocation density and decrease in Fe fiber spacing. Raising annealing temperature brought about decrease of tensile strength and increase of electrical conductivity up to $500^{\circ}C$, being followed by decreasing above $500^{\circ}C$. Such results are thought to be caused by decrease of dislocation density below $500^{\circ}C$ and rapid solubility increase of Fe in Cu above $500^{\circ}C$. For the purpose of obtaining both high strength and high conductivity, annealing process should be incorporated just prior to reaching to final draw strain. For Cu-10wt%Fe alloy, the tensile strength 706.9 MPa and the electrical conductivity 54.34%IACS were obtained through the processes of drawing up to ${\eta}=3$, annealing at $500^{\circ}C$ for 1 hour and additional drawing up to total strain of ${\eta}=4$.

Keywords

OCRHB6_2019_v32n3_107_f0001.png 이미지

Fig. 1. Property change with draw strain (a) Tensile strength, (b) Electrical Conductivity (%IACS).

OCRHB6_2019_v32n3_107_f0002.png 이미지

Fig. 2. Property change with draw strain (a) Average distance between Fe fibers, (b) Average width of Fe fiber.

OCRHB6_2019_v32n3_107_f0003.png 이미지

Fig. 3. Property change with annealing temperature (a) Tensile strength, (b) Electrical Conductivity (%IACS).

OCRHB6_2019_v32n3_107_f0004.png 이미지

Fig. 4. Property change with annealing temperature (a) Average distance between Fe fibers, (b) Average width of Fe fiber.

OCRHB6_2019_v32n3_107_f0005.png 이미지

Fig. 5. Property change with annealed draw strain (a) Tensile strength, (b) Electrical Conductivity (%IACS).

OCRHB6_2019_v32n3_107_f0006.png 이미지

Fig. 6. Property change with annealed draw strain (a) Average distance between Fe fibers, (b) Average width of Fefiber.

Table 1. Diameter variation of Cu-Fe wire corresponding to draw strain

OCRHB6_2019_v32n3_107_t0001.png 이미지

References

  1. P. M. Berge, G. R. Haupt, E. D. Gibson and J. D. Verhoeven : Wire Journal International (1991) 62.
  2. 김창주, 이정무, "기계와 재료" 6 (1994) 89.
  3. M. J. Tenwick and H. A. Davies : Mater. Sci. Eng, 35 (1988)543.
  4. D. G. Morris and M. A. Morris : Acta Metall, Mater, 39 (1991) 1763. https://doi.org/10.1016/0956-7151(91)90144-P
  5. M. Holscher, D. Raabe and K. Lucke : Acta Metall. Mater, 42 (1994) 879. https://doi.org/10.1016/0956-7151(94)90283-6
  6. D. A. Hardwick, C. G. Rhodes and L. G. Fritzemeier : Metall. Trans., 27A (1993) 27.
  7. D. A. Hardwick, C. G. Rhodes and L. G. Fritzemeier : Sci. 36 (2001) 2711.
  8. D. A. Hardwick, C. G. Rhodes and L. G. Fritzemeier : Metall. Trans., B 51 (1995) 8076.
  9. W. A. Spitzig, H. L. Downing, F. C. Laabs, E. D. Gibson, J. D. Verhoeven : Metall, Trans, 24A (1993) 7.
  10. P. D. Funkenbusch, T. H. Courtney : Scripta Metall 15 (1981) 1349. https://doi.org/10.1016/0036-9748(81)90096-X
  11. M. J. Dianez, E. Donoso, M. J. Sayagues, A. Perejon, P. E. Sanchez-Jimenez, L. A. Perez-Maqueda and J. M. Criado : J. Alloy Compd. 688 (2016) 288. https://doi.org/10.1016/j.jallcom.2016.07.021
  12. H. Fernee, J. Nairn and A. Atrens : J. Mater.
  13. Y. N. Zhang, J. L. Zi, M. S. Zheng and J. W. Zhu : J. Alloy Compd. 462 (2008).
  14. J. Eckert, J. C. Holzer, C. E. Krill and W. J. Johnson : J. Appl. Phys. 73 (1993) 2794. https://doi.org/10.1063/1.353055
  15. E. Ma, M. Atzmon and F. E. Pinkerton : J. Appl. Phys. 74 (1993) 955. https://doi.org/10.1063/1.354837
  16. P. Bellon and R. S. Averback : Phys. Rev. Lett. 74 (1995) 1819. https://doi.org/10.1103/PhysRevLett.74.1819
  17. Z. J. Zhang, O. Jin and B. X. Liu : Phys. Rev.
  18. O. Jin, Z. J. Zhang and B. X. Liu : Appl. Phys. Lett. 67 (1995) pp.1524. https://doi.org/10.1063/1.114480
  19. W. A. Spitzig, H. L. Downing, F. C. Laabs, E. D. Gibson and J. D. Verhoeven : Metall, Trans, 24A (1993) 7.
  20. O. Drbohlav and A. R. Yavari : Acta Metall. Mater. 43 (1995) 1799. https://doi.org/10.1016/0956-7151(94)00401-3
  21. A. R. Miedema : Philips Tech. Rev. 36 (1976) 217.
  22. 김병일, 배차헌, 이지환, 이정중, '비철금속재료', 원창출판사 (1993).
  23. William F. Smith저, 김진천, 방재철 역 : "materials science and engineering", 사이텍 미디어(2005).