• Title/Summary/Keyword: fiber cross section

Search Result 238, Processing Time 0.027 seconds

Behavior Analysis of the Treated Femur and Design of Composite Hip Prosthesis (대퇴부 거동 해석 및 복합재료 보철물 설계)

  • 임종완;하성규
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.119-130
    • /
    • 2002
  • The nonlinear finite element program has been developed to analyze the design performance of an artificial hip prosthesis and long term behavior of a treated femur with stems made of composite material after cementless total hip arthroplasty(THA). The authors developed the three dimentional FEM models of femoral bone with designed composite stem which was taken with elliptic cross section of 816 brick elements under hip contact load and muscle farce in simulating single leg stand. Using the program, density changes, stress distributions and micromotions of the material femoral bone were evaluated by changing fiber orientation of stems for selected manufacturing method such as plate cut and bend mold. The results showed that the composite materials such as AS4/PEEK and T300/976 gave less bone resorption than the metallic material such as cobalt chrome alloy, titanium alloy and stainless steal. It was found that increasing the long term stability of the prosthesis in the femur could be obtained by selecting the appropriate ply orientation and stacking sequence of composite.

Thermal Stress Analysis of Composite Beam through Dimension Reduction and Recovery Relation (차원축소와 복원관계를 통한 복합재료 보의 열응력 해석)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.381-387
    • /
    • 2017
  • Fiber-reinforced composites not only have a direction of thermal expansion coefficient, but also inevitably suffer thermal stress effects due to the difference between the manufacturing process temperature and the actual use temperature. The damage caused by thermal stress is more prominent in the case of thick composite laminates, which are increasingly applied in the aerospace industry, and have a great influence on the mechanical function and fracture strength of the laminates. In this study, the dimensional reduction and thermal stress recovery theory of composite beam structure having high slenderness ratio is introduced and show the efficiency and accuracy of the thermal stress comparison results between the 3-D finite element model and the dimension reduction beam model. Efficient recovery analysis study will be introduced by reconstructing the thermal stress of the composite beam section applied to the thermal environment by constructing the dimensional reduction modeling and recovery relations.

The Effects of Daekumeumja on Alcohol-induced Muscle Atrophy in Rats (대금음자(對金飮子)가 흰쥐의 만성 알콜성 근위축에 미치는 영향)

  • Kim, Bum Hoi
    • Herbal Formula Science
    • /
    • v.24 no.3
    • /
    • pp.153-161
    • /
    • 2016
  • Chronic alcoholic myopathy is one of the most common skeletal muscle disorders. It is characterized by a reduction in the entire skeletal musculature, skeletal muscle weakness, and difficulties in gait. Patients with alcoholic hepatitis and cirrhosis have severe muscle loss that contributes to worsening outcome. Although the myopathy selectively affects Type II (fast twitch, glycolytic, anaerobic) skeletal muscle fibers, total skeletal musculature is reduced. The severity of the muscle atrophy is proportional to the duration and amount of alcohol consumed and leads to decreased muscle strength. The mechanisms for the myopathy are generally unknown but it is not due to overt nutritional deficiency, nor due to either neuropathy or severe liver disease. Skeletal muscle mass and protein content are maintained by a balance between protein synthesis and breakdown and in vivo animal models studies have shown that ethanol inhibits skeletal muscle protein synthesis. Daekumeumja is a traditional Korean medicine that is widely employed to treat various alcohol-induced diseases. Muscle diseases are often related to liver diseases and conditions. The main objective of this study was to assess that Daekumeumja extract could have protective effect against alcoholic myopathy in a Sprague-Dawley rat model. Rats were orally given 25% ethanol (5ml/kg, body weight) for 8 weeks. After 30 minutes, rats were administrated with Daekumeumja extract. Controls were similarly administrated with the vehicle alone. The weights of gastrocnemius, soleus and plantaris muscles were assessed and the morphologic changes of gastrocnemius and plantaris muscles were also assessed by hematoxylin and eosin staining. In results, The muscles from ethanol treated rats displayed a significant reduction in muscle weight and average cross section area compared to Normal group. Daekumeumja extract treated group showed increased muscle weight and muscle fiber compared to the ethanol treated group. It was concluded that Daekumeumja extract showed ameliorating effects on chronic alcohol myopathy in skeletal muscle.

An Experimental Study on the Long-Term Deflection of Concrete Beams with GFRP Rebars (FRP 보강 콘크리트 보의 장기처짐에 관한 실험연구)

  • Park, Ji-Sum;You, Young-Jun;Park, Young-Hwan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.325-328
    • /
    • 2008
  • This study is to investigate experimentally the long-term deflection of concrete beams with glass fiber reinforced polymer (GFRP) reinforcing bars subjected to the sustained flexural load for periods of up to 6 months. A total of four beams were tested. All beams were designed with net span of 2,700 mm and rectangular cross-section of 200 mm width and 300 mm depth. From the test results the time-dependent deflection of concrete beams with GFRP bars was about 40 to 70% of the initial deflection. As well as this paper compares the long-term deflection calculated by 440.1R-06 design guide and that of tested beams. The comparison indicated that the calculated long-term deflection overestimate the observed long-term deflection of concrete beams with FRP rebars.

  • PDF

Strengthening of Cutouts in Existing One-Way Spanning R. C. Flat Slabs Using CFRP Sheets

  • Shehab, Hamdy K.;Eisa, Ahmed S.;El-Awady, Kareem A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.327-341
    • /
    • 2017
  • Openings in slabs are usually required for many different applications such as aeriation ducts and air conditioning. Opening in concrete slabs due to cutouts significantly decrease the member stiffness. There are different techniques to strengthen slabs with opening cutouts. This study presents experimental and numerical investigations on the use of Carbon Fiber Reinforced Polymers (CFRP) as strengthening material to strengthen and restore the load carrying capacity of R.C. slabs after having cutout in the hogging moment region. The experimental program consisted of testing five (oneway spanning R.C. flat slabs) with overhang. All slabs were prismatic, rectangular in cross-section and nominally 2000 mm long, 1000 mm width, and 100 mm thickness with a clear span (distance between supports) of 1200 mm and the overhang length is 700 mm. All slabs were loaded up to 30 kN (45% of ultimate load for reference slab, before yielding of the longitudinal reinforcement), then the load was kept constant during cutting concrete and steel bars (producing cut out). After that operation, slabs were loaded till failure. An analytical study using finite element analysis (FEA) is performed using the commercial software ANSYS. The FEA has been validated and calibrated using the experimental results. The FE model was found to be in a good agreement with the experimental results. The investigated key parameters were slab aspect ratio for the opening ratios of [1:1, 2:1], CFRP layers and the laminates widths, positions for cutouts and the CFRP configurations around cutouts.

Effects of Sizing Treatment of Carbon Fibers on Mechanical Interfacial Properties of Nylon 6 Matrix Composites (탄소섬유의 사이징처리가 탄소섬유/나일론6 복합재료의 기계적 계면 특성에 미치는 영향)

  • Park, Soo-Jin;Choi, Woong-Ki;Kim, Byung-Joo;Min, Byung-Gak;Bae, Kyong-Min
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.2-6
    • /
    • 2010
  • The sizing treatments of PAN-based carbon fiber surfaces were carried out in order to improve the interfacial adhesion in the carbon fibers/nylon6 composite system. The parameter to characterize the wetting performance and surface free energy of the sized fibers were determined by a contact angle method. The mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of sized CFs/nylon6composites were observed by SEM. As the experimental results, it was observed that silane-based sizing treated carbon fibers showed higher surface free energies than other sizing treatments. In particular, the KIC of the sizing-treated carbon fibers reinforced composites showed higher values than those of untreated carbon fibers-reinforced composites. This result indicated that the increase in the surface free energy of the fibers leads to the improvement of the mechanical interfacial properties of carbon fibers/nylon6 composites.

Properties of Ultra High Performance Fiber Reinforced Cementitious Composites Mixed with Limestone Powder (석회석 미분말을 혼입한 초고성능 섬유보강 시멘트복합재의 특성)

  • Han, Sang-Mook;Wu, Xiang-Guo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.23-30
    • /
    • 2008
  • UHPC has high performance, high strength and excellent mechanical properties. Moreover UHPC(Ultra High Performance Cementitious Composite) has advantage to reduce cross section under the same load compared with other kinds of concrete. But silica fume which is imported from foreign country has a abundant portion in UHPC mixture in comparison with normal concrete. This is one of the main reason to raise the construction cost. Superior mechanical properties of UHPC due to the optimum filling composition can be changed by replacing the very fine ingredient. The purpose of this research is to grasp the characteristic of UHPC which silica fume and silica flour is replaced with limestone powder. This experiment can be divided into three classes according to the kinds of replacement. The compressive strength and flow of all types were measured and microstructure and hydration phenomena for comparing RPC were analyzed by SEM, XRD, NMR method. As a result, the replacement can be considered to be effective by for the decrease of the UHPC structure construction cost and improvement of the fresh UHPC.

Development of the CFRP Automobile Parts Using the Joint Structure of the Dissimilar Material (결합부 강화구조용 탄소복합재 자동차 부품 개발)

  • Ko, Kwan Ho;Lee, Min Gu;Huh, Mongyoung
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.392-397
    • /
    • 2018
  • In this study, the development purpose is to replace steel Tie Rod of commercial vehicle to the carbon composite by a braiding process. CFRP tie rod was designed to meet the performance requirements of existing products by designing the cross section of the core for braiding weaving and the structural design of the joint between the core and the carbon fiber. The specimens were fabricated by braiding method and applied to structural analysis through test evaluation. The manufacturing process proceeded from braiding to infusion through post-curing process. The test evaluation of the final product was satisfactorily carried out by sequentially performing tensile test, torsion test, compression test and fatigue test. In addition, the weight of CFRP tie rod could be reduced by about 37% compared to existing products.

A Study on the Application of Medical Compression Arm Sleeves Using a MRT(Moisture Responded Transformable) Fibers (MRT(Moisture Responded Transformable)섬유의 의료용 압박소매 적용에 관한 연구)

  • Cho, Daehyun;Jung, Taedu;Park, Eunhee;Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.33 no.2
    • /
    • pp.87-95
    • /
    • 2021
  • In this study, the application of a medical compression sleeve of Moisture Responded Transformable(MRT) fibers to the treatment of lymphedema after surgery in breast cancer patients was investigated. MRT fibers were manufactured with PET and Nylon6 bi-component cross-section yarns, and compression sleeves of sleeves 1, 2, 3, and 4 were knitted in order of size, and then the physical properties and clinical tests were evaluated. As a result, the pressure of compression sleeve in wrinkle was the lowest in sleeve 1 with 3.81 kPa, and the highest in sleeve 4 with 5.22 kPa. Elastic recovery rate is that all parts except the top of the sleeve 1 exhibited 100%. The air permeability was good at 12.1 ~ 16.1 cm3/cm2/sec, and peeling was also comparatively excellent as grade 3. In addition, the weight of the compression sleeves 1, 2, and 3 decreased as 18.3 ~ 23.0 g/m2 depend on size, while the compared sample was heavier with 17.39 ~ 32.61 g/m2. In lymphoscintigraphy test, it was confirmed that the function of remaining lymph node was good in all patients. Although there were no differences between samples in skin irritation and tightness in wearing comfort, the manufactured sleeves showed better fit, lightness, fashion and breathability than the comparable sleeves.

Comparative study of external-intenal morphological shape in origins and hybrids for Glycyrrhizae Radix et Rhizoma (감초의 기원 및 교잡종 외내부형태 성상 비교연구)

  • Kim, Young-Sik;Park, Chun-Geon;Choi, Goya;Chang, Jae-Ki;Lee, Jeong-Hoon;Ju, Young-Sung
    • The Korea Journal of Herbology
    • /
    • v.34 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • Objectives : The consumption of licorice is large in Korea, but domestic production is insufficient due to the lack of adaptability. This study aimed to provide a morphological basis for adding interspecific hybrid licorice with improved adaptability to pharmacopoeia. Methods : This study was to establish identification criteria for the original plants, external and internal morphology of the authentic herbal medicines (Glycyrrhiza uralensis, G. glabra and G. inflata), market products and artificially interspecific hybrid forms of licorice. For this purpose, previous studies were investigated and visual and histological observations were carried out. We focused on the internal morphology by microscopic observation for securing objectivity. Finally, we proposed the identification keys for precise classification of each part. Results : 1) Original plant : Licorice species in the compendium were distinguished by the number of leaflets, presence of hair on the fruit, curvature and swelling of the fruit. 2) External morphology : Licorice species were distinguished by degree of powderiness, tearing gap, radial structure in the cross section and existence of protrusion of outer epidermis. 3) Internal morphology : Licorice species were distinguished by the degree of development of phloem fiber bundle, development of obliterated sieve, whether the secondary medullary ray are branched. In the case of interspecific hybrids, the characteristics of both species used for hybridization were mixed in all observation methods. Conclusions : These results suggest that the interspecific crossbred licorice is suitable for the pharmacopoeial standard. Therefore, it can be applied as a herbal medicine through additional supplementary study.