• Title/Summary/Keyword: ferromagnetic materials

Search Result 320, Processing Time 0.036 seconds

Dynamic Magneto-mechanical Behavior of Magnetization-graded Ferromagnetic Materials

  • Chen, Lei;Wang, Yao
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.215-220
    • /
    • 2014
  • This study investigates the dynamic magneto-mechanical behavior of magnetization-graded ferromagnetic materials Terfenol-D/FeCuNbSiB (MF). We measure the dynamic magneto-mechanical properties as a function of the DC bias magnetic field ($H_{dc}$). Our experimental results show that these dynamic magneto-mechanical properties are strongly dependent on the DC bias magnetic field. Furthermore, the dynamic strain coefficient, electromechanical resonance frequency, Young's moduli, and mechanical quality factor of Terfenol-D/FeCuNbSiB are greater than those of Terfenol-D under a lower DC bias magnetic field. The dynamic strain coefficient increases by a factor of between one and three, under the same DC bias magnetic field. In particular, the dynamic strain coefficient of Terfenol-D/FeCuNbSiB at zero bias achieves 48.6 nm/A, which is about 3.05 times larger than that of Terfenol-D. These good performances indicate that magnetization-graded ferromagnetic materials show promise for application in magnetic sensors.

Ferromagnetic Semiconductors: Preparation and Properties

  • 조성래
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.19-19
    • /
    • 2003
  • The injection of spins into nonmagnetic semiconductors has recently attracted great interest due to the potential to create new classes of spin-dependent electronic devices. A recent strategy to achieve control over the spin degree of freedom is based on dilute ferromagnetic semiconductors. Ferromagnetism has been reported in various semiconductor groups including II-Ⅵ, III-V, IV and II-IV,-V$_2$, which will be reviewed. On the other hand, to date the low solubility of magnetic ions in non-magnetic semiconductor hosts and/or low Curie temperature have limited the opportunities. Therefore the search for other promising ferromagnetic semiconducting materials, with high magnetic moments and high Curie temperatures (Tc), is of the utmost importance. In this talk, we also introduce new pure ferromagnetic semiconductors, MnGeP$_2$ and MnGeAs$_2$, exhibiting ferromagnetism and a magnetic moment per Mn at 5K larger than 2.40 ${\mu}$B. The calculated electronic structures using the FLAPW method show an indirect energy gap of 0.24 and 0.06 eV, respectively. We have observed spin injection in MnGeP$_2$ and MnGeAs$_2$ magnetic tunnel junctions through semiconducting barriers.

  • PDF

Room-Temperature Ferromagnetic Behavior in Ferroelectric BiFeO3-BaTiO3 System Through Engineered Superexchange Path (초교환 상호작용 제어를 통해 강유전 BiFeO3-BaTiO3 시스템에서 유도된 상온 강자성 거동)

  • Ko, Nu-Ri;Cho, Jae-Hyeon;Jang, Jongmoon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.386-392
    • /
    • 2021
  • Multiferroics exhibiting the coexistence and a possible coupling of ferromagnetic and ferroelectric order are attracting widespread interest in terms of academic interests and possible applications. However, room-temperature single-phase multiferroics with soft ferromagnetic and displacive ferroelectric properties are still rare owing to the contradiction in the origin of ferromagnetism and ferroelectricity. In this study, we demonstrated that sizable ferromagnetic properties are induced in the ferroelectric bismuth ferrite-barium titanate system simply by introducing Co ions into the A-site. It is noted that all modified compositions exhibit well-saturated magnetic hysteresis loops at room temperature. Especially, 70Bi0.95Co0.05FeO3-30Ba0.95Co0.05TiO3 manifests noticeable ferroelectric and ferromagnetic properties; the spontaneous polarization and the saturation magnetization are 42 µC/cm2 and 3.6 emu/g, respectively. We expect that our methodology will be widely used in the development of perovskite-structured multiferroic oxides.

Domain Wall Motions in Ferromagnetic Thin Film Induced by Laser Heating Pulse

  • Park, Hyun Soon
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.128-129
    • /
    • 2018
  • Soft ferromagnetic materials are utilized for various electromagnetic devices such as magnetic recording heads and magnetic shielding. In situ observation of magnetic microstructures and domain wall motions are prerequisite for understanding and improving their magnetic properties. In this work, by the Fresnel (out-of-focus) method of Lorentz microscopy, we observe the domain wall motions of polycrystalline Ni/Ti thin film layers triggered by single-shot laser pulse. Random motions of domain walls were visualized at every single pulse.

Characterization and Analysis of Integrated RF Ferromagnetic Spiral Inductors (자성물질을 이용한 나선형 인덕터의 고주파 특성 분석)

  • Cha, S.Y.;Kim, G.B.;Jung, Y.C.;Choi, Y.S.;Cho, K.H.;Rieh, J.S.;Hwang, S.W.;Hyun, E.K.;Lee, S.R.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.109-111
    • /
    • 2006
  • This paper presents characterization and analysis of integrated ferromagnetic inductors in RF regime. Two different materials (CoFe/NiFe) are used as ferromagnetic material. Systematic studies of the inductance (L), the Q-factor (Q) and the structure of the inductor have been performed.

  • PDF

A Study on the Deperm Protocols Considering Demagnetizing Field of a Ferromagnetic Material

  • Ju, Hye Sun;Won, Hyuk;Chung, Hyun Ju;Park, Gwan Soo
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • Magnetic materials with large coercive force and high squareness ratio are currently developing to meet an industrial demand. Since a ferromagnetic material has hysteresis characteristics, it is hard to demagnetize a ferromagnetic material precisely. In this paper, we describe deperm processes and conduct an analysis of residual magnetization of ferromagnetic material using the Preisach modeling with a two-dimensional finite elements method (FEM). From the results, it was shown that an exponential decrement form of deperm protocol is more efficient than a linear decrement form because of the demagnetizing field in the ferromagnetic material.

Microstructure and Magnetic Properties of Til-xCoxO2 Diluted Magnetic Semiconductor Thin Films with Various Co Concentrations by Metal Organic Chemical Vapor Deposition (유기 금속 화학 기상 증착법으로 제조된 자성반도체 Til-xCoxO2 박막의 Co 조성 변화에 따른 미세구조 및 자기적 특성)

  • Seong, Nak-Jin;Oh, Young-Nam;Cho, Chae-Ryong;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.737-741
    • /
    • 2003
  • Polycrystalline $Ti_{l-x}$ $Co_{x}$ $O_2$thin films on $SiO_2$ (200 nm)/Si (100) substrates were prepared using liquid-delivery metalorganic chemical vapor deposition. Microstructures and ferromagnetic properties were investigated as a function of doped Co concentration. Ferromagnetic behaviors of polycrystalline films were observed at room temperature, and the magnetic and structural properties strongly depended on the Co distribution, which varied widely with doped Co concentration. The annealed $Ti_{l-x}$ $Co_{x}$ $O_2$thin films with $x\leq$0.05 showed a homogeneous structure without any clusters, and pure ferromagnetic properties of thin films are only attributed to the X$l-x_{l-x}$ $Co_{x}$X$O_2$phases. On the other hand, in case of thin films above x = 0.05, Co-rich clusters formed in a homogeneous $Ti_{l-x}$ $Co_{x}$ $O_2$phase, and the overall ferromagnetic (FM) properties depended on both FMTCO and FMCo. Co-rich clusters with about 10-150 nm size decreased the value of Mr (the remanent magnetization) and increased the saturation magnetic field.

Fabrication of Ferromagnetic Mn-AI Alloy N anoparticles using a Plasma Arc-discharge Process (플라즈마 아크 방전법에 의한 강자성 Mn-Al 합금나노입자의 합성)

  • Lee, Jung-Goo;Li, Pu;Dong, Xing Long;Choi, Chul-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • Ferromagnetic Mn-Al nanoparticles were prepared using a plasma arc discharge method. The influence of the process parameters on the vaporization rate, composition, particle size, and magnetic properties of the as-produced nanoparticles was investigated. The Mn content was found to be higher in the nanoparticles than in the corresponding mother materials, although the difference diminished with the reaction time. As the $H_2$ content in the reaction gas increased, both the vaporization rate and the particle size increased. With 30 at.% Mn, the average particle diameter was 35.2 nm under a pure Ar gas condition, whereas it was 95.4 nm at a Ar:$H_2$ ratio of 60:40. With the addition of a small amount of carbon, ${\varepsilon}$-phase nanoparticles were successfully synthesized. After a heat treatment in a vacuum for 30 min at $500^{\circ}C$, the nonmagnetic ${\varepsilon}$-phase was transformed into the ferromagnetic ${\tau}$-phase, and a very high coercivity of nearly 5.6 kOe was achieved.

Determination of the Degree of Alloying by Detection of Residual Ferromagnetic Elements for Intermetallic Alloys Processed by Mechanical Alloying (잔류 자성원소 검출에 의한 금속간화합물의 기계적 합금화 공정에서의 합금화 정도 해석)

  • Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.561-566
    • /
    • 2003
  • Mechanical alloying(MA) process using elemental powders followed by hot pressing has been applied to some intermetallic alloy system containing ferromagnetic elements, such as NiAl and $FeSi_2$. A modified thermogravimetric analysis (TGA) technique was used to investigate the degree of alloying in milled powders and hot consolidated specimens as well as heat-treated bulk specimens. It is shown that the measurement of Curie temperatures in MA intermetallic powders and consolidated specimens containing ferromagnetic components, when determined as a function of milling and heat treatment parameters, can give some insight into the progress and mechanism of alloying.