DOI QR코드

DOI QR Code

Microstructure and Magnetic Properties of Til-xCoxO2 Diluted Magnetic Semiconductor Thin Films with Various Co Concentrations by Metal Organic Chemical Vapor Deposition

유기 금속 화학 기상 증착법으로 제조된 자성반도체 Til-xCoxO2 박막의 Co 조성 변화에 따른 미세구조 및 자기적 특성

  • Seong, Nak-Jin (Department of Materials Engineering, Chungnam National University) ;
  • Oh, Young-Nam (Department of Materials Engineering, Chungnam National University) ;
  • Cho, Chae-Ryong (Korea Basic Science Institute, Busan branch) ;
  • Yoon, Soon-Gil (Department of Materials Engineering, Chungnam National University)
  • 성낙진 (충남대학교 재료공학과) ;
  • 오영남 (충남대학교 재료공학과) ;
  • 조채룡 (한국기초과학지원연구원, 부산분소) ;
  • 윤순길 (충남대학교 재료공학과)
  • Published : 2003.11.01

Abstract

Polycrystalline $Ti_{l-x}$ $Co_{x}$ $O_2$thin films on $SiO_2$ (200 nm)/Si (100) substrates were prepared using liquid-delivery metalorganic chemical vapor deposition. Microstructures and ferromagnetic properties were investigated as a function of doped Co concentration. Ferromagnetic behaviors of polycrystalline films were observed at room temperature, and the magnetic and structural properties strongly depended on the Co distribution, which varied widely with doped Co concentration. The annealed $Ti_{l-x}$ $Co_{x}$ $O_2$thin films with $x\leq$0.05 showed a homogeneous structure without any clusters, and pure ferromagnetic properties of thin films are only attributed to the X$l-x_{l-x}$ $Co_{x}$X$O_2$phases. On the other hand, in case of thin films above x = 0.05, Co-rich clusters formed in a homogeneous $Ti_{l-x}$ $Co_{x}$ $O_2$phase, and the overall ferromagnetic (FM) properties depended on both FMTCO and FMCo. Co-rich clusters with about 10-150 nm size decreased the value of Mr (the remanent magnetization) and increased the saturation magnetic field.

Keywords

References

  1. A. Twardowski, Acta Phys. Pol. A 98, 203 (2000)
  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science, 287, 1019 (2000) https://doi.org/10.1126/science.287.5455.1019
  3. K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, L555 (2000) https://doi.org/10.1143/JJAP.39.L555
  4. Y. M. Cho, W. K. Choo, H. J. Kim, D. J. Kim and Y. E. Ihrn, Appl. Phys. Lett. 80, 3358 (2002) https://doi.org/10.1063/1.1478146
  5. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-Y. Koshihara and H. Koinuma, Science, 291, 854 (2001) https://doi.org/10.1126/science.1056186
  6. L. Forro, O. Chauvet, D. Emin and L. Zuppiroli, J. Appl. Phys. 75, 633 (1994) https://doi.org/10.1063/1.355801
  7. S. A. Chambers, S. Thevuthasan, R. F. C. Farrow, R. F. Marks, J. U. Thiele, L. Folks, M. G. Samant, A. J. Kellock, N. Ruzycki, D. L. Ederer and U. Diebold, Appl. Phys. Lett. 79, 3467 (2001) https://doi.org/10.1063/1.1420434
  8. I. B. Shim, S. Y. An, C. S. Kim, S. Y. Choi and Y. W. Park, J. Appl. Phys. 91, 7914 (2002) https://doi.org/10.1063/1.1451880
  9. Y. Y. Kim, J. S. Baek, S. J. Lee, W. Y. Lim, S. C. Yu and S. H. Lee, IEEE Trans. Magn. 33, 3607 (1997) https://doi.org/10.1109/20.619512