Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.5.386

Room-Temperature Ferromagnetic Behavior in Ferroelectric BiFeO3-BaTiO3 System Through Engineered Superexchange Path  

Ko, Nu-Ri (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST))
Cho, Jae-Hyeon (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST))
Jang, Jongmoon (Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS))
Jo, Wook (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.5, 2021 , pp. 386-392 More about this Journal
Abstract
Multiferroics exhibiting the coexistence and a possible coupling of ferromagnetic and ferroelectric order are attracting widespread interest in terms of academic interests and possible applications. However, room-temperature single-phase multiferroics with soft ferromagnetic and displacive ferroelectric properties are still rare owing to the contradiction in the origin of ferromagnetism and ferroelectricity. In this study, we demonstrated that sizable ferromagnetic properties are induced in the ferroelectric bismuth ferrite-barium titanate system simply by introducing Co ions into the A-site. It is noted that all modified compositions exhibit well-saturated magnetic hysteresis loops at room temperature. Especially, 70Bi0.95Co0.05FeO3-30Ba0.95Co0.05TiO3 manifests noticeable ferroelectric and ferromagnetic properties; the spontaneous polarization and the saturation magnetization are 42 µC/cm2 and 3.6 emu/g, respectively. We expect that our methodology will be widely used in the development of perovskite-structured multiferroic oxides.
Keywords
Multiferroics; Ferromagnetism/ferromagnetic oxides; Superexchange interaction; Ferroelectricity/ferroelectric oxides; Bismuth ferrite-barium titanate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. O. Leontsev and R. E. Eitel, J. Am. Ceram. Soc., 92, 2957 (2009). [DOI: https://doi.org/10.1111/j.1551-2916.2009.03313.x]   DOI
2 R.A.M. Gotardo, L. F. Cotica, I. A. Santos, M. Olzon-Dyonisio, S. D. Souza, D. Garcia, J. A. Eiras, and A. A. Coelho, Appl. Phys. A, 111, 563 (2012). [DOI: https://doi.org/10.1007/s00339-012-7258-y]   DOI
3 S. Unruan, M. Unruan, T. Monnor, S. Priya, and R. Yimnirun, J. Am. Ceram. Soc., 98, 3291 (2015). [DOI: https://doi.org/10.1111/jace.13789]   DOI
4 W. Yi, Z. Lu, X. Liu, D. Huang, Z. Jia, Z. Chen, X. Wang, and H. Zhu, J. Mater. Sci.: Mater. Electron., 32, 7719 (2021). [DOI: https://doi.org/10.1007/s10854-021-05490-9]   DOI
5 Y. Wei, X. Wang, J. Zhu, X. Wang, and J. Jia, J. Am. Ceram. Soc., 96, 3163 (2013). [DOI: https://doi.org/10.1111/jace.12475]   DOI
6 J. Wu, Z. Fan, D. Xiao, J. Zhu, and J. Wang, Prog. Mater. Sci., 84, 335 (2016). [DOI: https://doi.org/10.1016/j.pmatsci.2016. 09.001]   DOI
7 C. Li, T. Zheng, and J. Wu, Acta Mater., 206, 116601 (2021). [DOI: https://doi.org/10.1016/j.actamat.2020.116601]   DOI
8 D. K. Pradhan, S. Kumari, and P. D. Rack, Nanomaterials, 10, 2072 (2020). [DOI: https://doi.org/10.3390/nano10102072]   DOI
9 M. A. Jalaja and S. Dutta, Adv. Mater. Lett., 6, 568 (2015). [DOI: https://doi.org/10.5185/amlett.2015.5878]   DOI
10 S. W. Cheong, D. Talbayev, V. Kiryukhin, and A. Saxena, npj Quantum Mater., 3, 19 (2018). [DOI: https://doi.org/10.1038/s41535-018-0092-5]   DOI
11 Y. Tokura and S. Seki, Adv. Mater., 22, 1554 (2010). [DOI: https://doi.org/10.1002/adma.200901961]   DOI
12 S. Dong, H. Xiang, and E. Dagotto, Natl. Sci. Rev., 6, 629 (2019). [DOI: https://doi.org/10.1093/nsr/nwz023]   DOI
13 D. N. Astrov, Sov. Phys. JETP 11, 708 (1960).
14 J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science, 299, 1719 (2003). [DOI: https://doi.org/10.1126/science.1080615]   DOI
15 T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature, 426, 55 (2003). [DOI: https://doi.org/10.1038/nature02018]   DOI
16 J. F. Scott, NPG Asia Mater., 5, e72 (2013). [DOI: https://doi.org/10.1038/am.2013.58]   DOI
17 Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, N. Balke, C. H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh, Nat. Mater., 7, 478 (2008). [DOI: https://doi.org/10.1038/nmat2184]   DOI
18 I. Kim, Y. S. Oh, Y. Liu, S. H. Chun, J. S. Lee, K. T. Ko, J. H. Park, J. H. Chung, and K. H. Kim, Appl. Phys. Lett., 94, 042505 (2009). [DOI: https://doi.org/10.1063/1.3076102]   DOI
19 K. Zhai, Y. Wu, S. Shen, W. Tian, H. Cao, Y. Chai, B. C. Chakoumakos, D. Shang, L. Yan, F. Wang, and Y. Sun, Nat. Commun., 8, 519 (2017). [DOI: https://doi.org/10.1038/s41467-017-00637-x]   DOI
20 J. H. Cho, S. Cho, J. H. Lee, H. Palneedi, J. H. Lee, H. P. Kim, N. J. Lee, S. Tigunta, S. Pojprapai, S. Kim, J. Ryu, Y. S. Oh, S. Hong, and W. Jo, J. Am. Ceram. Soc. (2021). [DOI: https://doi.org/10.1111/jace.18012]   DOI
21 S. R. Burns, O. Paull, J. Juraszek, V. Nagarajan, and D. Sando, Adv. Mater., 32, 2003711 (2020). [DOI: https://doi.org/10.1002/adma.202003711]   DOI
22 K. Sanjoom and G. Rujijanagul, Ferroelectrics, 454, 51 (2013). [DOI: https://doi.org/10.1080/00150193.2013.842778]   DOI
23 S. T. Zhang, M. H. Lu, D. Wu, Y. F. Chen, and N. B. Ming, Appl. Phys. Lett., 87, 262907 (2005). [DOI: https://doi.org/10.1063/1.2147719]   DOI
24 J. W. Woo, S. B. Baek, T. K. Song, M. H. Lee, J. U. Rahman, W. J. Kim, Y. S. Sung, M. H. Kim, and S. Lee, J. Korean Ceram. Soc., 54, 323 (2017). [DOI: https://doi.org/10.4191/kcers.2017.54.4.04]   DOI
25 A. H. Khan, S. Atiq, M. S. Anwar, S. Naseem, and S. K. Abbas, J. Mater. Sci.: Mater. Electron., 29, 11812 (2018). [DOI: https://doi.org/10.1007/s10854-018-9281-z]   DOI
26 M. H. Lee, D. J. Kim, H. I. Choi, M. H. Kim, T. K. Song, W. J. Kim, and D. Do, ACS Appl. Electron. Mater., 1, 1772 (2019). [DOI: https://doi.org/10.1021/acsaelm.9b00315]   DOI
27 T. Kimura, Annu. Rev. Condens. Matter Phys., 3, 93 (2012). [DOI: https://doi.org/10.1146/annurev-conmatphys-020911-125101]   DOI
28 N. A. Spaldin and R. Ramesh, Nat. Mater., 18, 203 (2019). [DOI: https://doi.org/10.1038/s41563-018-0275-2]   DOI
29 J. Kanamori, J. Phys. Chem. Solids, 10, 87 (1959). [DOI: https://doi.org/10.1016/0022-3697(59)90061-7]   DOI
30 W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, J. Electroceram., 29, 71 (2012). [DOI: https://doi.org/10.1007/s10832-012-9742-3]   DOI
31 M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, Nat. Rev. Mater., 1, 16046 (2016). [DOI: https://doi.org/10.1038/natrevmats.2016.46]   DOI
32 J. H. Cho and W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 149 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.3.149]   DOI
33 H. Palneedi, V. Annapureddy, S. Priya, and J. Ryu, Actuators, 5, 9 (2016). [DOI: https://doi.org/10.3390/act5010009]   DOI
34 J. F. Scott, Nat. Mater., 6, 256 (2007). [DOI: https://doi.org/10.1038/nmat1868]   DOI
35 C. H. Hong, H. Guo, X. Tan, J. E. Daniels, and W. Jo, J. Materiomics, 5, 634 (2019). [DOI: https://doi.org/10.1016/j.jmat.2019.06.004]   DOI
36 J. Pal, S. Kumar, L. Singh, M. Singh, and A. Singh, J. Magn. Magn. Mater., 441, 339 (2017). [DOI: https://doi.org/10.1016/j.jmmm.2017.05.047]   DOI