DOI QR코드

DOI QR Code

Fabrication of Ferromagnetic Mn-AI Alloy N anoparticles using a Plasma Arc-discharge Process

플라즈마 아크 방전법에 의한 강자성 Mn-Al 합금나노입자의 합성

  • Lee, Jung-Goo (Functional Materials Division, Korea Institute of Materials Science) ;
  • Li, Pu (Functional Materials Division, Korea Institute of Materials Science,School of Materical Science and Engineering, Dalian Univeristy of Technology(DUT)) ;
  • Dong, Xing Long (School of Materical Science and Engineering, Dalian Univeristy of Technology(DUT)) ;
  • Choi, Chul-Jin (Functional Materials Division, Korea Institute of Materials Science)
  • 이정구 (한국기계연구원 부설 재료연구소 기능재료연구본부) ;
  • ;
  • ;
  • 최철진 (한국기계연구원 부설 재료연구소 기능재료연구본부)
  • Received : 2009.10.26
  • Published : 2010.04.15

Abstract

Ferromagnetic Mn-Al nanoparticles were prepared using a plasma arc discharge method. The influence of the process parameters on the vaporization rate, composition, particle size, and magnetic properties of the as-produced nanoparticles was investigated. The Mn content was found to be higher in the nanoparticles than in the corresponding mother materials, although the difference diminished with the reaction time. As the $H_2$ content in the reaction gas increased, both the vaporization rate and the particle size increased. With 30 at.% Mn, the average particle diameter was 35.2 nm under a pure Ar gas condition, whereas it was 95.4 nm at a Ar:$H_2$ ratio of 60:40. With the addition of a small amount of carbon, ${\varepsilon}$-phase nanoparticles were successfully synthesized. After a heat treatment in a vacuum for 30 min at $500^{\circ}C$, the nonmagnetic ${\varepsilon}$-phase was transformed into the ferromagnetic ${\tau}$-phase, and a very high coercivity of nearly 5.6 kOe was achieved.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. H. Kono, J. Phys. Soc. Jpn. 13, 1444 (1958) https://doi.org/10.1143/JPSJ.13.1444
  2. Q. Zeng, I. Baker, J. B. Cui, and Z. C. Yan, J. Magn. Magn. Mater. 308, 214 (2007)
  3. X. J. Liu, R. Kainuma, H. Ohtani, and K. Ishida, J. Alloys and Comp. 235, 256 (1996) https://doi.org/10.1016/0925-8388(95)02144-2
  4. D. P. Hoydick, E. J. Palmiere, and W. A. Soffa, J. AppI. Phys. 81, 5624 (1997) https://doi.org/10.1063/1.364619
  5. C. Muller, H. H. Stadelmaier, B. Reinsh, and G. Petzow, Z. Metallkd. 87, 594 (1996)
  6. H. Yamamoto, Magnet alloys, Us. Pat. 3661567 (1972)
  7. P. C. Kuo et al., J. AppI. Phys. 81, 5621 (1997) https://doi.org/10.1063/1.364618
  8. E. Fazakas, L. K. Varga, and F. Mazaleyrat, J. Alloys Compd. 434/435, 611 (2007) https://doi.org/10.1016/j.jallcom.2006.08.313
  9. W. P. Halperin, Rev. Modern Phys. 58, 533 (1986) https://doi.org/10.1103/RevModPhys.58.533
  10. R. P. Andres et al., J. Mater. Res. 4, 704 (1989) https://doi.org/10.1557/JMR.1989.0704
  11. J. G. Lee, H. Mori, and H. Yasuda, J. Mater. Res. 20, 1708 (2005) https://doi.org/10.1557/JMR.2005.0223
  12. J. G. Lee, J. Lee, T. Tanaka, and H. Mori, Phys. Rev. Lett. 96, 075504 (2006) https://doi.org/10.1103/PhysRevLett.96.075504
  13. J. Vejpravova et al., J. AppI. Phys. 97, 124304 (2005) https://doi.org/10.1063/1.1929849
  14. X. F. Zhang et aI., AppI. Phys. Lett. 89, 053115 (2006) https://doi.org/10.1063/1.2236965
  15. Q. Zeng, J. Baker, J. B. Cui, and Z .C. Yan, J. Magn. Magn. Mater. 308, 214 (2007) https://doi.org/10.1016/j.jmmm.2006.05.032
  16. X. L. Dong, C. J. Choi, and B. K. Kim, Scr. Mater. 47, 857 (2002) https://doi.org/10.1016/S1359-6462(02)00304-4
  17. X. L. Dong, Z. D. Zhang, S. R. Jin, and B. K. Kim, J. AppI. Phys. 86, 6701 (1999) https://doi.org/10.1063/1.371747
  18. D. Vollath, J. Nanopart. Res. 10, 39 (2008) https://doi.org/10.1007/s11051-008-9427-7
  19. M. Tanaka, and T. Watanabe, Thin Solid Films 516, 6645 (2008) https://doi.org/10.1016/j.tsf.2007.11.096
  20. S. Ohno, and M. Uda, J. Jpn. Inst. Metals. 48, 640 (1984) https://doi.org/10.2320/jinstmet1952.48.6_640
  21. T. Watanabe, H. Itoh, Y and Ishii, Thin Solid Films 390, 44 (2001) https://doi.org/10.1016/S0040-6090(01)00923-3
  22. X. L. Dong et al., J. Mater. Res. 14, 398 (1999) https://doi.org/10.1557/JMR.1999.0058
  23. C. B. Alcock, V. P. Itkin, and M. K. Horrigan, Can. Metall. Q. 23, 309 (1984) https://doi.org/10.1179/000844384795483058
  24. I. Langmuir, Phys Rev. 2, 329 (1913) https://doi.org/10.1103/PhysRev.2.329
  25. T. Liu, Y H. Leng, and X. G. Li, Solid State Commun. 125, 391 (2003) https://doi.org/10.1016/S0038-1098(02)00831-1
  26. R. S. Wagner and W. C. Ellis, AppI. Phys. Lett. 4,89 (1964) https://doi.org/10.1063/1.1753975
  27. W. S. Zhang et al., Physica B 370, 131 (2005) https://doi.org/10.1016/j.physb.2005.09.001
  28. T. Ohtani et al., IEEE Trans. Magn. 13, 1328 (1977) https://doi.org/10.1109/TMAG.1977.1059574
  29. L. Pu, J. G. Lee, C. J. Choi, and. X. L. Dong, Thin Solid Films (2009) submitted
  30. Y. Sakamoto et aI., J. AppI. Phys. 50, 2355 (1979) https://doi.org/10.1063/1.327000