• 제목/요약/키워드: ferritic steel

검색결과 246건 처리시간 0.028초

페라이트 스테인리스 강판의 집합조직과 성형성에 미치는 중간열처리의 영향 (Effect of Intermediate Annealing on the Texture and Formability in Ferritic Stainless Steel Sheet)

  • 조성윤;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.17-20
    • /
    • 2000
  • In order to improve the sheet formability of the ferritic stainless steel, the through-thickness textures of the recrystallized sample was modified by means of a thermomechanical treatment. An annealing process between the cold rolling reductions modified the preferred orientations throughout the thickness, which resulted in the modification of the final cold rolling texture as well as the final recrystallization texture. With the help of the modification of the recrystallization texture by the intermediate annealing, improvement of the sheet formability, i.e. an increase of the Lankford value.

  • PDF

결정소성 유한요소해석에 의한 극박 스테인리스강의 성형한계선도 예측 (Forming Limit Diagram Prediction for Ultra-Thin Ferritic Stainless Steel Using Crystal Plasticity Finite Element Method)

  • 봉혁종;이명규;한흥남
    • 소성∙가공
    • /
    • 제26권3호
    • /
    • pp.144-149
    • /
    • 2017
  • In order to characterize the macroscopic mechanical response of ultra-thin (0.1 mm thick) ferritic stainless steel sheet at various loading paths, a crystal plasticity finite element method (CP-FEM) was introduced. The accuracy of the prediction results was validated by comparing with the experimental data. Based on the results, the forming limit diagram (FLD) was predicted using a modified Marchinicak-Kuczinski model coupled to a non-quadratic anisotropic yield function, namely, Yld2000-2d. The predicted FLD was found to be in good agreement with the experimental data.

자동차배기관용 페라이트계 스테인레스강의 고온염부식에 미치는 Mo, Ti, Nb 원소의 영향 (Effect of Mo, Ti, Nb on the hot salt corrosion behavior of ferritic stainless steels for automotive exhaust system)

  • 김수정;안용식
    • 한국해양공학회지
    • /
    • 제11권3호
    • /
    • pp.48-55
    • /
    • 1997
  • The steel for automotive exhaust system needs a good corrosion resistance at the atmosphere of high temperature NaCl. Effect of the alloying elements Me, Ti, Nb on the NaCl induced hot corrosion behavior was investigated at the temperatures between 55$0^{\circ}C$ and 75$0^{\circ}C$ for 18Cr ferritic stainless steels. The weight loss by corrosion has increased linearly with corrosion cycle time, and the corrosion rate has accelerated at higher temperature. The alloying of Mo significantly improved corrosion resistance of the steel and the effect was more pronounced at higher temperature. The addition of alloying elements Ti, Nb have also shown improved corrosion resistance by formation of Ti(C,N) or Nb(C, N) precipitates.

  • PDF

페라이트계 스테인리스 강의 열간압연 시 표면 층의 집합조직 발달에 미치는 윤활의 영향 (Effect of Lubrication during Hot Rolling on the Evolution of Textures at the surface of 18%Cr Ferritic Stainless Steel Sheet)

  • 편영범;강형구;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.411-414
    • /
    • 2008
  • In order to study the effect of lubrication during hot rolling, ferritic stainless steel (FSS) sheet were hot-rolled with and without application of lubrication. The effect of two hot rolling processes on the evolution of texture and microstructure after hot rolling, cold rolling and subsequent recrystallization annealing was studied by means of macro-texture analysis and microstructure observations. After hot rolling, the specimen rolled with lubrication showed rolling textures at the sheet surface, while the specimen rolled without lubrication displayed shear textures in the outer layers of the sheet. Hot rolling with lubrication was beneficial to the formation of strong recrystallization textures at sheet surface. However, hot rolling with lubrication led to the formation of orientation colonies in outer thickness layers of the recrystallized sheet.

  • PDF

페라이트계 스테인리스강의 고온염 부식특성에 관한 연구 (High Temperature Salt Corrosion Property of Ferritic Stainless Steels)

  • 송전영;박중철;안용식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.860-866
    • /
    • 2009
  • It is very important to choose optimal material having good corrosion resistance and capabilities for the part materials such as the automotive exhaust system under a hot salt corrosion atmosphere. Generally, two types of corrosion come into the automotive exhaust system. One is 'Condensate Corrosion', which is occurred by exhaust gas condensate formed at the inner surface of exhaust system heated up during driving, which results in the acid condensate pitting. The other is 'High Temperature Salt Corrosion' occurring from the interaction between the chloride ion coming from salt at the seaside district or snow salt and the outer surface of exhaust system. By the corrosion attack, the main muffler is firstly damaged and the life cycle of an automobile is significantly decreased. It has been investigated that the hot salt corrosion properties of a STS 409L and 436L ferritic stainless steels which are well-known for the materials of the automotive exhaust system. In addition, the corrosion properties of hot dip aluminum coated STS 409L have been compared with uncoated steels. Aluminum coated STS 409L showed a superior corrosion resistance than uncoated STS 409L, and futhermore showed a better corrosion resistance than a STS 436L, which is an expensive ferritic stainless steel having a excellent corrosion resistance caused from more chromium content of an alloying element.

Weldability of Type 444 Ferritic Stainless Steel GTA Welds

  • Li, C.;Jeong, H.S.
    • International Journal of Korean Welding Society
    • /
    • 제3권1호
    • /
    • pp.29-33
    • /
    • 2003
  • The ferritic stainless steels are generally considered to have poor weldability compared with that of the austenitic stainless steels. However the primary advantages of ferritic stainless steels include lower material cost than the more commonly used austenitic stainless steels and a greater resistance to stress corrosion cracking. Thus, the weldability of ferritic stainless steels was investigated in this study. In concerning the weldability, Grain size measurement test, Erichsen test and Varestraint test were involved. full penetration welds were produced by autogeneous direct current straight polarity (DCSP) and pulsed currents gas tungsten arc welding (GIAW) and the effect of pulsed currents welding on the welds was compared to that of DCSP welding. The results showed that pulsed current was effective to refine grain size in the weld metal and the finest grain size was obtained at the frequency of 150Hz. In addition, the ductility of welds was lower than that of base metal. Finally, autogeneous type 444 welds were less susceptible to macro solidification cracks, but more sensitive to micro cracks; SEM/EDS analysis indicated that all the inclusions in the crack showed enrichment of Mn, Si, O and S.

  • PDF

페라이틱 강 배관내의 원주방향 표면균열 평가를 위한 새로운 Z-Factor의 개발 (Development of New Z-Factor for the Evaluation of Circumferential Surface Crack In Ferristic Steel Pipings)

  • 최영환;정연기;이정배
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1798-1809
    • /
    • 1996
  • The purpose of this paper is to develop new Z-Factors to evaluate the behavior of circumferential surface crack in ferritic steel piping including base metal and Submerged Arc Weld(SAW) metal in nuclear power plant. The Z-factor is a load multiplier to convert plastic load to elasto-plastic load. However the current Z-Factor is a load multiplier to convert plastic load to elasto-plastic load. However the current Z-Factor gives too conservative results. In this study, a J-estimation method, SC.TNP method, which is based on GE/EPRI expression, is used to develop new Z-Factors. The desirabilities of both the SC.TNP mehtod and the new Z-Factors are examined using the previous experimental results for the circumferential surface crack in ferritic steel pippings. The results are as follows ; (1) The SC.TNP mehtod is good for describing the circumferential surface crack behavior in farritic steel pipings, while the well-known R6 mehtod and DPFAD method give too conservative results. (2) The ASME-Z-Factor method using nwe Z-Factors well predicts the behavior of circumferential surface crack in ferritic steel pipings including base emtal and SAW metal.

페라이트기 9Cr 내열강의 크리프-피로손상에 따른 미세조직 및 초음파 비파괴평가 (Microstructural Evolution and Ultrasonic Nondestructive Evaluation During Creep-Fatigue of 9Cr Ferritic Heat-Resisting Steel)

  • 김정석;권숙인;박익근
    • 한국재료학회지
    • /
    • 제17권8호
    • /
    • pp.425-432
    • /
    • 2007
  • The microstructural evolution of ferritic 9Cr-1Mo-V-Nb steel, subjected to creep-fatigue at $550^{\circ}C$, was evaluated nondestructively by measuring the ultrasonic velocity. The variation of the ultrasonic velocity with the fatigue life fraction exhibited three regions. In the first region ($N/N_f$<0.2), a significant increase in the velocity was observed, followed by a slight increase between the fatigue life fractions of $0.2N_f$ and $0.8N_f$, and then a decrease in the final region. The change of the ultrasonic velocity during creep-fatigue was interpreted in relation to the microstructural properties. This study proposes an ultrasonic nondestructive evaluation method of quantifying the level of damage and microstructural change during the creep-fatigue of ferritic 9Cr-1Mo-V-Nb steel.

An Overview on Hydrogen Uptake, Diffusion and Transport Behavior of Ferritic Steel, and Its Susceptibility to Hydrogen Degradation

  • Kim, Sung Jin;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • 제16권4호
    • /
    • pp.209-225
    • /
    • 2017
  • Development of high strength steel requires proper understanding of hydrogen behavior since the higher the steel strength the greater the susceptibility of hydrogen assisted cracking. This paper provides a brief but broad overview on hydrogen entry and transport behavior of high-strength ferritic steels. First of all, hydrogen absorption, diffusion and trapping mechanism of the steels are briefly introduced. Secondly, several experimental methods for analyzing the physical/chemical nature of hydrogen uptake and transport in the steels are reviewed. Among the methods, electrochemical permeation technique utilized widely for evaluating the hydrogen diffusion and trapping behavior in metals and alloys is mainly discussed. Moreover, a modified permeation technique accommodating the externally applied load and its application to a variety of steels are intensively explored. Indeed, successful utilization of the modified permeation technique equipped with a constant load testing device leads to significant academic progress on the hydrogen assisted cracking (HAC) phenomenon of the steels. In order to show how the external and/or residual stress affects mechanical instability of steel due to hydrogen ingress, the relationship among the microstructure, hydrogen permeation, and HAC susceptibility is briefly introduced.

저방사화 페라이트강(RAFs)의 파괴인성 및 피로균열진전 특성 (Characterization of the fracture toughness and fatigue crack propagation of reduced activation ferritic steel(RAFs))

  • 김동현;윤한기;김사웅
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.13-18
    • /
    • 2004
  • The objective of this study is to investigate fracture toughness and fatigue crack propagation behavior in the Reduced Activation Ferritic Steel (RAFs) JLF-I. The fracture toughness tests were performed with various size(plane size and thickness) and various side groove of specimens. The fatigue crack propagation behavior of the JLF-I steel was investigated by the constant-amplitude loading test for the stress ratios R=O.I, 0.3 and 0.5 respectively. The effects of stress ratios and specimen size on the fatigue crack growth behaviors for JLF-I steel were discussed within the Paris law. The test results showed the standard CT specimen with the side groove of 40 % represented a valid fracture toughness. The fracture resistance curve increased with increasing plane size and decreased with increasing thickness. However, the fracture resistance curve of half size specimen was similar to that of the standard specimen. The fatigue crack propagation rate of a half size specimen was similar to that of a full size specimen at the stress ratios of 0.1, 0.3 and 0.5 respectively. The fatigue crack propagation behavior of this material were evaluated by using a half size specimen.

  • PDF