Browse > Article
http://dx.doi.org/10.14773/cst.2017.16.4.209

An Overview on Hydrogen Uptake, Diffusion and Transport Behavior of Ferritic Steel, and Its Susceptibility to Hydrogen Degradation  

Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
Kim, Kyoo Young (GIFT, Pohang University of Science and Technology (POSTECH))
Publication Information
Corrosion Science and Technology / v.16, no.4, 2017 , pp. 209-225 More about this Journal
Abstract
Development of high strength steel requires proper understanding of hydrogen behavior since the higher the steel strength the greater the susceptibility of hydrogen assisted cracking. This paper provides a brief but broad overview on hydrogen entry and transport behavior of high-strength ferritic steels. First of all, hydrogen absorption, diffusion and trapping mechanism of the steels are briefly introduced. Secondly, several experimental methods for analyzing the physical/chemical nature of hydrogen uptake and transport in the steels are reviewed. Among the methods, electrochemical permeation technique utilized widely for evaluating the hydrogen diffusion and trapping behavior in metals and alloys is mainly discussed. Moreover, a modified permeation technique accommodating the externally applied load and its application to a variety of steels are intensively explored. Indeed, successful utilization of the modified permeation technique equipped with a constant load testing device leads to significant academic progress on the hydrogen assisted cracking (HAC) phenomenon of the steels. In order to show how the external and/or residual stress affects mechanical instability of steel due to hydrogen ingress, the relationship among the microstructure, hydrogen permeation, and HAC susceptibility is briefly introduced.
Keywords
ferritic steel; hydrogen uptake; hydrogen permeation; hydrogen assisted cracking;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. E. Fujita, The iron-hydrogen phase diagram, in: R. A. Oriani, J. P. Hirth, M. Smialowski, Hydrogen degradation of ferrous alloys, p. 1, Noyes publications, New Jersey (1985).
2 K. Kiuchi and R. B. Mclellan, Acta Metall., 31, 961 (1983).   DOI
3 R. A. Oriani, Trans. Fusion. Tech., 26, 235 (1994).
4 Y. Huang, A. Nakajima, A. Nishikata, and T. Tsuru, ISIJ Int., 43, 548 (2003).   DOI
5 S. J. Kim, H. G. Jung, and K. Y. Kim, Electrochim. Acta, 78, 139 (2012).   DOI
6 Z. A. Iofa and F. L. Kam, Zashchita Metallov., 10, 17 (1974).
7 A. Kawashima, K. Hashimoto, and S. Shimodaira, Corrosion, 32, 321 (1976).   DOI
8 G. T. Park, S. U. Koh, H. G. Jung, and K. Y. Kim, Corros. Sci., 50, 1865 (2008).   DOI
9 H. Y. Liou, R. I. Shieh, F. I. Wei, and S. C. Wang, Corrosion, 49, 389 (1993).   DOI
10 C. Mendibide and T. Sourmail, Corros. Sci., 51, 2878 (2009).   DOI
11 W. K. Kim. H. G. Jung, G. T. Park, S. U. Koh, and K. Y. Kim, Scripta Mater., 62, 195 (2010).   DOI
12 E. Akiyama, K. Matsukado, S. Li, and K. Tsuzaki, App. Surf. Sci., 257, 8275 (2011).   DOI
13 S. Li, Z. Zhang, E. Akiyama, K. Tsuzaki, and B. Zhang, Corros. Sci., 52, 1660 (2010).   DOI
14 T. Tsuru, Y. Huang, M. R. Ali, and A. Nishikata, Corros. Sci., 47, 2431 (2005).   DOI
15 T. Omura, T. Kudo, and S. Fujimoto, Mater. Trans., 47, 2956 (2006).   DOI
16 A. R. Troiano, Trans ASM., 52, 54 (1960).
17 S. P. Lynch, Proc. NACE International Conf., p. 55, NACE, Nashville, USA (2007).
18 C. Zapffe and C. Sims, Trans. AIME, 145, 225 (1941).
19 S. Gahr, M. L. Grossbek, and H. K. Birnbaum, Acta Metall., 25, 125 (1977).   DOI
20 N. J. Petch and P. Stable, Nature, 169, 842 (1952).   DOI
21 W. Y. Choo and J. Y. Lee, Metall. Trans., 13A, 683 (1982).
22 K. H. So, J. S. Kim, Y. S. Chun, K. T. Park, Y. K. Lee, and C. S. Lee, ISIJ Int., 49, 1952 (2009).   DOI
23 ISO Standard 3690, Determination of hydrogen in deposited weld metal arising from the use of covered electrodes for welding mild and low alloy steels (1977).
24 JIS Standard Z3113, Method for measurement of hydrogen evolved from deposited metal (1975).
25 M. A. V. Devanathan and Z. Stachurski, Proc. Royal. Soc., A270, 90 (1962).
26 ISO Standard 17081, Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique (2004).
27 M. Kurkela and R. M. Latanision, Scripta Mater. 13, 927 (1979).   DOI
28 R. Otsuka and M. Isaji, Scripta Metall., 15, 1153 (1981).   DOI
29 M. Hashimoto and R. M. Latanision, Theoretical study of hydrogen transport during plastic deformation in ironMetall. Trans., 19, 2789 (1988).   DOI
30 A. M. Brass and J. Chene, Corros. Sci., 48, 481 (2006).   DOI
31 G. T. Park, H. G. Jung, S. U. Koh, and K. Y. Kim, 19th International Offshore and Polar Engineering (ISOPE) Conf., p. 268, ISOPE, Osaka, Japan (2009).
32 M. Kurkela, G. S. Frankel, and R. M. Latanision, Scripta Mater., 16, 455 (1982).   DOI
33 W. Beck, J. O'. M. Bockris, J. McBreen, and L. Nanis L, Proc. Royal. Soc., 290, 220 (1966).   DOI
34 K. T. Kim and S. I. Pyun, Scripta Metall., 22, 1719 (1988).   DOI
35 S. J. Kim and K. Y. Kim, Scripta Mater., 66, 1069 (2012).   DOI
36 S. X. Xie and J. P. Hirth, Corrosion, 38, 486 (1982).   DOI
37 D. L. Johnson, G. Krauss, J. K. Wu, and K. P. Tang, Metall. Trans., 18A, 717 (1987).
38 D. L. Johnson and J. -K. Wu, J. Mater. Ene. Sys., 8, 402 (1987).   DOI
39 H. W. Jeng, L. H. Chiu, D. L. Johnson, and J. K. Wu, Metall. Trans., 21A, 3257 (1990).
40 M. I. Luppo and J. O-Garcia, Corros. Sci., 32, 1125 (1991).   DOI
41 W. C. Luu and J. K. Wu, Corros. Sci., 38, 239 (1996).   DOI
42 S. J. Kim, H. G. Jung, and K. Y. Kim, NACE International Conf., NACE-11292, NACE, Salt Lake City, Utah, USA (2012).
43 S. J. Kim and K. Y. Kim, J. Weld. Join., 32, 13 (2014).   DOI
44 D. A. Jones, Principles and prevention of corrosion, 2nd ed., p. 86, Prentice Hall, NJ (1996).
45 P. W. Bolmer, Corrosion, 21, 69 (1965).   DOI
46 W. K. Kim, S. U. Koh, B. Y. Yang, and K. Y. Kim, Corros. Sci., 50, 3336 (2008).   DOI
47 S. U. Koh, J. S. Kim, B. Y. Yang, and K. Y. Kim, Corrosion, 60, 244 (2004).   DOI
48 J. O'. M. Bockris, J. McBreen, and L. Nanis, J. Electrochem. Soc., 112, 1025 (1965).   DOI
49 J. P. Hirth, Hydrogen-defect interactions, in: R. A. Oriani, J. P. Hirth, M. Smialowski, Hydrogen degradation of ferrous alloys, p. 131, Noyes publications, New Jersey (1985).
50 J. P. Hirth, Metall. Trans., 11A, 861 (1980).
51 A. J. Kumnick, H. H. Johnson, Acta Metall., 28, 33 (1980).   DOI
52 I. Maroef, D. L. Olson, M. Eberhart, and G. R. Edwards, Mater. Rev., 47, 191 (2002).   DOI
53 M. I. Luppo and J. Ovejero-Garcia, Corros. Sci., 32, 1125 (1991).   DOI
54 V. Olden, C. Thaulow, and R. Johnsen, Mater. Des., 29, 1934 (2008).   DOI
55 J. L. Lee and J. Y. Lee, Metall. Trans., 17A, 2183 (1986).
56 S. Serna S, H. Martinez, S. Y. Lopez, J. G. Gonzalez-Rodriguez, and J. L. Albarran, Int. J. Hydro. Ene., 30, 1333 (2005).   DOI
57 G. M. Pressouyre and I. M. Bernstein, Metall. Trans., 12A, 835 (1981).
58 G. W. Hong and J. Y. Lee, J. Mater. Sci., 18, 271 (1983).   DOI
59 S. K. He, G. S. Wang, and S. N. Wang, Acta Metall. Sinica., 9, 619 (1996).
60 T. Asaoka, C. Dagbert, M. Aucouturier, and J. Galland, Scripta Mater., 11, 467 (1977).   DOI
61 L. Tau L, S. L. I. Chan SLI, and C. S. Shin, Corros. Sci., 38, 2049 (1996).   DOI
62 D. L. Johnson, G. Krauss, J. K. Wu, and K. P. Tang, Metall. Trans., 18A, 717 (1987).
63 Y. D. Park, I. S. Maroef, A. Landau, and D. L. Olson, Weld. Res., 81, 27 (2002).
64 T. Bollinghaus, H. Hoffmeister, and C. Middel, Weld. in the World, 37, 16 (1996).
65 J. H. Ryu, Y. S. Chun, C. S. Lee, H. K. D. H. Bhadeshia, and D. W. Suh, Acta Mater., 60, 4085 (2012).   DOI
66 R. Gibala and J. Kumnick, Hydrogen trapping in iron and steels, in: R. Gibala, R. F. Hehemann, Hydrogen embrittlement and stress corrosion cracking, p. 61, ASM Int., OH, (1984).
67 H. H. Podgurski and R. A. Oriani, Metall. Trans., 3, 2055 (1972).   DOI
68 P. Lacombe, M. Aucouturier, J. P. Laurent, and G. L. Passet, Proc. NACE International Conf., p. 423, NACE, Houston, TX (1977).
69 E. Chrnet and R. W. Coughlin, J. Catalysis, 27, 246 (1972).   DOI
70 J. L. Lee and J. Y. Lee, Metal. Sci., 17, 426 (1983).   DOI
71 H. G. Lee and J. Y. Lee, Acta Metall., 32, 131 (1984).   DOI
72 D. J. Kotecki and R. A. La Fave, Weld. J., 64, 31 (1985).
73 I. L. Stern, I. Kalinsky, and E. A. Fenton, Weld. J., 28, 405 (1949).
74 F. Coe, Metal Const., 18, 20 (1986).
75 A. Cornish-Bowden, Fundamentals of enzyme kinetics, p. 4, Wiley-VCH VerlagGmbH & Co., Berlin, Germany (2012).
76 G. K. Padhy and Y. Komizo, Trans. JWRI., 42, 39 (2013).
77 M. Koyama, H. Springer, S. V. Merzlikin, K. Tsuzaki, E. Akiyama, and D. Raabe, Int. J. Hyd. Ene., 39, 4634 (2014).   DOI
78 H. E. Kissinger, Anal. Chem., 29, 1702 (1957).   DOI
79 E. J. Song, D. W. Suh, and H. K. D. H. Bhadeshia, Comp. Mater. Sci., 79, 36 (2013).   DOI
80 D. Perez Escobar, T. Depover, L. Duprez, K. Verbeken, and M. Verhaege, Acta Mater., 60, 2593 (2012).   DOI
81 H. M. Ha, J. H. Ai, and J. R. Scully, Corrosion, 70, 166 (2014).   DOI
82 Y. S. Chun, J. S. Kim, K. T. Park, Y. K. Lee, and C. S. Lee, Mater. Sci. Eng., 533A, 87 (2012).
83 G. Lovicu, M, Barloscio, M. Bottazzi, F. D'Aiuto, M. De Sanctis, A. Dimatteo, C. Federici, S. Maggi, C. Santus, and R. Valentini, 2nd Super-High Strength Steels Conf., Verona, Italy (2010).
84 E. W. Johnson and M. L. Hill, Trans. AIME., 218, 1104 (1960).
85 C. Wert and C. Zener, Phy. Rev., 76, 1169 (1949).   DOI
86 J. Kittel, F. Ropital, and J. Pellier, NACE International Conf., NACE-08409, NACE, Houston, TX, USA (2008).
87 T. Zakroczymski, Electrochim. Acta, 51, 2261 (2006).   DOI
88 S. H. Wang, W. C. Luu, K. F. Ho, and J. K. Wu, Mater. Chem. Phy., 77, 447 (2002).
89 W. C. Luu and J. K. Wu, Corros. Sci., 38, 239 (1996).   DOI
90 S. Frappart, X. Feaugas, J. Creus, F. Thebault, L. Delattre, and H. Marchebois, Mater. Sci. Eng., A534, 384 (2012).
91 A. M. Brass and J. Chene, Mater. Sci. Eng., A242, 210 (1998).
92 S. J. Kim, H. S. Suh, and K. Y. Kim, Met. Mater. Int., 21, 666 (2015).   DOI
93 A. Turnbull, M. W. Carroll, and D. H. Ferriss, Acta Metall., 37, 2039 (1989).   DOI
94 S. J. Kim, D. W. Yun, H. G. Jung, and K. Y. Kim, J. Electrochem. Soc., 161, E173 (2014).   DOI
95 A. J. Kumnick and H. H. Johnson, Metall. Trans., 5, 1199 (1974).   DOI
96 P. Manolatos, M. Jerome, and J. Galland, Electrochim. Acta, 40, 867 (1995).   DOI
97 J. B. Leblond JB and D. Dubois, Acta Metall., 31, 1459 (1983).   DOI
98 P. Bastien and P. Azou, C. R. Acad. Sci. Paris., 232, 1845 (1951).
99 G. S. Frankel and R. M. Latanision, Metall. Trans., 17A, 869 (1986).
100 T. Zakroczymski, Corrosion, 41, 485 (1985).   DOI
101 C. B. Zheng, H. K. Jiang, and Y. L. Huang, Corros. Eng. Sci. Tech., 46, 365 (2011).   DOI
102 H. E. Townsend, Corrosion, 26, 361 (1970).   DOI
103 S. J. Kim, D. W. Yun, D. W. Suh, and K. Y. Kim, Electrochem.Comm., 24, 112 (2012).   DOI
104 S. J. Kim, H. G. Jung, and K. Y. Kim, Proc. NACE International Conf., NACE-2012-1204, NACE, San Antonio, TX, USA (2011).