• 제목/요약/키워드: ferritic rolling

검색결과 29건 처리시간 0.02초

Rolling Contact Fatigue Property of Sintered and Carburized Compacts Made of Molybdenum Hybrid-alloyed Steel Powder

  • Unami, Shigeru;Ozaki, Yukiko;Uenosono, Satoshi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.144-145
    • /
    • 2006
  • A developed molybdenum hybrid-alloyed steel powder is based on a molybdenum prealloyed steel powder to which molybdenum powder particles are diffusion bonded. The sintered compact made of this powder has a finer pore structure than that of the conventional molybdenum prealloyed steel powder, because the ferritic iron phase $({\alpha}-phase)$ with a high diffusion coefficient is formed in the sintering necks where molybdenum is concentrated resulting in enhanced sintering. The rolling contact fatigue strength of the sintered and carburized compacts made of this powder improved by a factor of 3.6 compared with that of the conventional powder due to the fine pore structures.

  • PDF

Nb 첨가된 페라이트계 스테인리스강의 인장 및 부식 특성 (Tension and Corrosion Properties of Nb-added Ferritic Stainless Steel for Industrial Applications)

  • 한다인;카프란 기젬;최상규;조상헌;고영건
    • 소성∙가공
    • /
    • 제30권6호
    • /
    • pp.301-305
    • /
    • 2021
  • The role of Nb addition in the tension and corrosion responses of ferrite-based stainless-steel sheets processed by cold-rolling and annealing treatment at 1173 °K was studied to evaluate the possibility for commercialization. For this purpose, the grain sizes in the samples with and without Nb content were controlled to be reasonably identical by utilizing different heat treatments within the specific range for 60 seconds. The corrosion properties of both samples were evaluated based on the analysis of polarization curves. Room-temperature tension testing showed that the strength of the sample with Nb was much higher than that without Nb whereas the elongation of the sample with Nb was slightly lower than that without Nb. The polarization curves revealed that the addition of Nb contributed to the significant improvement in protective capabilities. We thought that such combinational behavior was mainly due to the formation of niobium carbides found in the ferritic matrix.

페라이트계 스테인레스강의 집합조직 형성에 미치는 초기 방위 및 오스테나이트사의 영향 (Effect of Initial Orientation and Austenitic Phase on Texture Evolution in Ferritic Stainless Steels)

  • 이용득
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 추계학술대회논문집
    • /
    • pp.149-152
    • /
    • 1999
  • The effect of initial orientation on the microstructure and texture evolution of two ferritic stainless steels was investigated. the columnar and equiaxed crystal specimens which were prepared from continuous casting slab were hot rolled annealed cold rolled and annealed respectively. The rolling and recrystallization textures at each process stage were examined by orientation distribution function (ODF) and electron back-scattered diffraction (EBSD); The observation showed that the orientation density of the $\alpha$-fibre of hot rolled band of columnar crystal specimen was more pronounced than that of the equaxed one at the center layer. Nevertheless the cold rolled textures of Type 430 steel have demonstrated a rather similar development . Compared to Type 430 steel the development of the $\alpha$-fibre in the center layer of Type 409L steel was much more pronounced. The relation between texture evolution and ridging behaviour has been discussed.

  • PDF

집합조직 분석에 의한 5겹 STS/Al 복합재 클래드 압연 시 변형상태 해석 (Interpretation of Strain States during Clad-Rolling of STS/Al 5 Ply Composites by Means of Texture Analysis)

  • 강형구;박준수;박수호;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.303-306
    • /
    • 2005
  • Two composites of five plies of STS/Al/Al/Al/STS and STS/Al/STS/Al/STS were produced by roll-cladding at $350^{\circ}C$ from ferritic stainless steel (STS) and aluminum (Al) sheets. In order to analyze the strain states during roll-cladding, the evolution of textures at different through-thickness positions in the roll-clad composites was investigated. Simulations with the finite element method (FEM) disclosed that a strain state which was similar to that of normal rolling with a high friction between roll surface and Al sample led to the formation of texture gradients in the Al sheets in the STS/Al/Al/Al/STS composite. Differences in the material velocity of STS and Al in the rolling direction gave rise to the formation of the shear texture in the Al sheets in the STS/Al/STS/Al/STS composite.

  • PDF

Simulation of impact toughness with the effect of temperature and irradiation in steels

  • Wang, Chenchong;Wang, Jinliang;Li, Yuhao;Zhang, Chi;Xu, Wei
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.221-227
    • /
    • 2019
  • One of the important requirements for the application of reduced activation ferritic/martensitic steel is to retain proper mechanical properties in irradiation and high temperature conditions. In order to simulate the impact toughness with the effect of temperature and irradiation, a simulation model based on energy balance method consisted of crack initiation, plastic propagation and cleavage propagation stages was established. The effect of temperature on impact toughness was analyzed by the model and the trend of the simulation results was basicly consistent with the previous experimental results of CLAM steels. The load-displacement curve was simulated to express the low temperature ductile-brittle transition. The effect of grain size and inclusion was analyzed by the model, which was consistent with classical experiment results. The transgranular-intergranular transformation in brittle materials was also simulated.

고온 가스질화 된 STS 430 스테인리스강의 냉간 가공성에 미치는 항온변태 열처리 시간 변화의 영향 (Effect of Isothermal Transformation Heat-treatment Time on Cold Workability of STS 430 Stainless Steel after High Temperature Gas Nitriding)

  • 김정민;현양기;송상우;김기동;손영호;성장현
    • 열처리공학회지
    • /
    • 제27권1호
    • /
    • pp.15-22
    • /
    • 2014
  • This study is to investigate the phase changes and cold workability after isothermal transformation at $780^{\circ}C$ by using the high temperature gas nitrided (HTGN) STS 430 ferritic stainless steel specimens. The phase diagram of STS 430 steel obtained by calculation showed that the phase appeared at $1100^{\circ}C$ showed as ${\alpha}+{\gamma}{\rightarrow}{\gamma}{\rightarrow}{\gamma}+Cr_2N{\rightarrow}{\gamma}+Cr_2N+CrN$ with increasing nitrogen concentration. Also, the transformation of ${\gamma}{\rightarrow}Cr_2N$ during heat treatment isothermally at $780^{\circ}C$, nitrogen pearlite with lamellar type was fully formed at the nitrogen permated surface layer for 10 hrs. However, this transformation was not completed for 1 hr, resulting nitrogen pearlite plus martensite. The cold rolled specimen of isothermally transformed at $780^{\circ}C$ for 10 hrs after high temperature gas nitriding decreased the layer thickness of nitrogen pearlite inducing the deformation of hard $Cr_2N$ phase. the dissolution rate of $Cr_2N$ phase increased rapidly with increasing cold rolling ratio. Specimens with the microstructure of nitrogen pearlite (isothermally transformed at $780^{\circ}C$ for 10 hrs) were possible to cold rolling without crack formation. However, the mixed structures of nitrogen pearlite + martensite (isothermally transformed at $780^{\circ}C$ for 1 hr) were impossible to cold deformation without cracking.

페라이트/마르텐사이트계 산화물분산강화강의 미세조직 및 샤르피 충격특성에 미치는 코발트 함량의 영향 (Effect of Cobalt Contents on the Microstructure and Charpy Impact Properties of Ferritic/martensitic Oxide Dispersion Strengthened Steel)

  • 권대현;노상훈;이정구
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.311-317
    • /
    • 2020
  • In this study, the effects of Co content on the microstructure and Charpy impact properties of Fe-Cr-W ferritic/martensitic oxide dispersion strengthened (F/M ODS) steels are investigated. F/M ODS steels with 0-5 wt% Co are fabricated by mechanical alloying, followed by hot isostatic pressing, hot-rolling, and normalizing/tempering heat treatment. All the steels commonly exhibit two-phase microstructures consisting of ferrite and tempered martensite. The volume fraction of ferrite increases with the increase in the Co content, since the Co element considerably lowers the hardenability of the F/M ODS steel. Despite the lowest volume fraction of tempered martensite, the F/M ODS steel with 5 wt% Co shows the highest micro-Vickers hardness, owing to the solid solution-hardening effect of the alloyed Co. The high hardness of the steel improves the resistance to fracture initiation, thereby resulting in the enhanced fracture initiation energy in a Charpy impact test at - 40℃. Furthermore, the addition of Co suppresses the formation of coarse oxide inclusions in the F/M ODS steel, while simultaneously providing a high resistance to fracture propagation. Owing to these combined effects of Co, the Charpy impact energy of the F/M ODS steel increases gradually with the increase in the Co content.

9Cr-3W 강의 크리프 특성에 미치는 Mo 첨가의 영향 (Effect of Mo addition on the Creep Properties of 9Cr-3W Steel)

  • 김용래;장진성;김태규
    • 한국주조공학회지
    • /
    • 제33권1호
    • /
    • pp.1-7
    • /
    • 2013
  • The effect of the Mo addition on the high temperature creep properties of the 9Cr-3W steel was also evaluated. Two experimental steels, (9Cr-3W and 9Cr-3W-0.5Mo), were prepared using a vacuum induction melting process, followed by hot rolling and heat treatment processes. Three types of precipitates, ($M_{23}C_6$, Nb-rich MX and V-rich MX) were observed in a typical tempered martensitic matrix. Significant effects of the Mo addition on the tensile properties were not observed. However, the creep properties at $650^{\circ}C$ under applied stresses of 140 and 150 MPa were considerably enhanced by the Mo addition. The microstructural observation after the creep test indicated that the addition of Mo could function to retain the recovery of the martensitic matrix, thus resulting in the enhanced creep properties of the 9Cr-3W-0.5Mo steel. Furthermore coarsening of the $M_{23}C_6$ carbides and formation of Laves phases were observed in both samples after the creep tests.

INFLUENCE OF MECHANICAL ALLOYING ATMOSPHERES ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 15Cr ODS STEELS

  • Noh, Sanghoon;Choi, Byoung-Kwon;Kang, Suk Hoon;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • 제46권6호
    • /
    • pp.857-862
    • /
    • 2014
  • Mechanical alloying under various gas atmospheres such as Ar, an Ar-$H_2$ mixture, and He gases were carried out, and its effects on the powder properties, microstructure and mechanical properties of ODS ferritic steels were investigated. Hot isostatic pressing and hot rolling processes were employed to consolidate the ODS steel plates. While the mechanical alloyed powder in He had a high oxygen concentration, a milling in Ar showed fine particle diameters with comparably low oxygen concentration. The microstructural observation revealed that low oxygen concentration contributed to the formation of fine grains and homogeneous oxide particle distribution by the Y-Ti-O complex oxides. A milling in Ar was sufficient to lower the oxygen concentration, and this led a high tensile strength and fracture elongation at a high temperature. It is concluded that the mechanical alloying atmosphere affects oxygen concentration as well as powder particle properties. This leads to a homogeneous grain and oxide particle distribution with excellent creep strength at high temperature.