DOI QR코드

DOI QR Code

Simulation of impact toughness with the effect of temperature and irradiation in steels

  • Wang, Chenchong (State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University) ;
  • Wang, Jinliang (State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University) ;
  • Li, Yuhao (High School Attached to Beijing University of Technology) ;
  • Zhang, Chi (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ;
  • Xu, Wei (State Key Laboratory of Rolling and Automation, School of Materials Science and Engineering, Northeastern University)
  • Received : 2018.02.26
  • Accepted : 2018.08.21
  • Published : 2019.02.25

Abstract

One of the important requirements for the application of reduced activation ferritic/martensitic steel is to retain proper mechanical properties in irradiation and high temperature conditions. In order to simulate the impact toughness with the effect of temperature and irradiation, a simulation model based on energy balance method consisted of crack initiation, plastic propagation and cleavage propagation stages was established. The effect of temperature on impact toughness was analyzed by the model and the trend of the simulation results was basicly consistent with the previous experimental results of CLAM steels. The load-displacement curve was simulated to express the low temperature ductile-brittle transition. The effect of grain size and inclusion was analyzed by the model, which was consistent with classical experiment results. The transgranular-intergranular transformation in brittle materials was also simulated.

Keywords

References

  1. T.K. Kim, S. Noh, S.H. Kang, J.J. Park, H.J. Jin, M.K. Lee, J. Jang, C.K. Rhee, Current status and future prospective of advanced radiation resistant oxide dispersion strengthened steel (ARROS) development for nuclear reactor system applications, Nucl. Eng. Technol. 48 (2016) 572-594. https://doi.org/10.1016/j.net.2015.12.005
  2. C. Wang, C. Zhang, J. Zhao, Z. Yang, W. Liu, Microstructure evolution and yield strength of CLAM steel in low irradiation condition, Mater. Sci. Eng. A 682 (2017) 563-568. https://doi.org/10.1016/j.msea.2016.11.057
  3. W. Wang, S. Liu, G. Xu, B. Zhang, Q. Huang, Effect of thermal aging on microstructure and mechanical properties of China low-activation martensitic steel at 550 degrees C, Nucl. Eng. Technol. 48 (2016) 518-524. https://doi.org/10.1016/j.net.2015.11.004
  4. S.N. Zhu, C. Zhang, Z.G. Yang, C.C. Wang, Hydrogen's influence on reduced activation ferritic/martensitic steels' elastic properties: density functional theory combined with experiment, Nucl. Eng. Technol. 49 (2017) 1748-1751. https://doi.org/10.1016/j.net.2017.08.021
  5. C. Wang, C. Zhang, Z. Yang, J. Zhao, Multiscale simulation of yield strength in reduced-activation ferritic/martensitic steel, Nucl. Eng. Technol. 49 (2017) 569-575. https://doi.org/10.1016/j.net.2016.10.006
  6. Y.-Y. Wang, J.-H. Ding, W.-B. Liu, S.-S. Huang, X.-Q. Ke, Y.-Z. Wang, C. Zhang, J.-J. Zhao, Irradiation-induced void evolution in iron: a phase-field approach with atomistic derived parameters, Chin. Phys. B (2017) 26.
  7. J. Brnic, G. Turkalj, M. Canadija, S. Krscanski, M. Brcic, D. Lanc, Deformation behaviour and material properties of austenitic heat-resistant steel X15CrNiSi25-20 subjected to high temperatures and creep, Mater. Des. 69 (2015) 219-229. https://doi.org/10.1016/j.matdes.2014.12.062
  8. C.C. Eiselt, H. Schendzielorz, A. Seubert, B. Hary, Y. de Carlan, P. Diano, B. Perrin, D. Cedat, ODS-materials for high temperature applications in advanced nuclear systems, Nucl. Mater. Energy 9 (2016) 22-28. https://doi.org/10.1016/j.nme.2016.08.017
  9. W. Wang, J. Chen, G. Xu, Effect of thermal aging on grain structural characteristic and Ductile-to-Brittle transition temperature of CLAM steel at $550^{\circ}C$, Fusion Eng. Des. 115 (2017) 74-79. https://doi.org/10.1016/j.fusengdes.2016.12.037
  10. S.J. Zinkle, J.L. Boutard, D.T. Hoelzer, A. Kimura, R. Lindau, G.R. Odette, M. Rieth, L. Tan, H. Tanigawa, Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications, Nucl. Fusion 57 (2017).
  11. J.-H. Baek, T.S. Byun, S.A. Maloy, M.B. Toloczko, Investigation of temperature dependence of fracture toughness in high-dose HT9 steel using smallspecimen reuse technique, J. Nucl. Mater. 444 (2014) 206-213. https://doi.org/10.1016/j.jnucmat.2013.09.029
  12. X. Chen, Y. Huang, B. Madigan, J. Zhou, An overview of the welding technologies of CLAM steels for fusion application, Fusion Eng. Des. 87 (2012) 1639-1646. https://doi.org/10.1016/j.fusengdes.2012.06.009
  13. Q. Huang, Development status of CLAM steel for fusion application, J. Nucl. Mater. 455 (2014) 649-654. https://doi.org/10.1016/j.jnucmat.2014.08.055
  14. M.G. Park, C.H. Lee, J. Moon, J.Y. Park, T.-H. Lee, N. Kang, H. Chan Kim, Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels, J. Nucl. Mater. 485 (2017) 15-22. https://doi.org/10.1016/j.jnucmat.2016.12.018
  15. L. Tan, Y. Katoh, A.A.F. Tavassoli, J. Henry, M. Rieth, H. Sakasegawa, H. Tanigawa, Q. Huang, Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service, J. Nucl. Mater. 479 (2016) 515-523. https://doi.org/10.1016/j.jnucmat.2016.07.054
  16. K.S. Cho, S.I. Kim, S.S. Park, W.S. Choi, H.K. Moon, H. Kwon, Effect of Ti addition on carbide modification and the microscopic simulation of impact toughness in high-carbon Cr-V tool steels, Metall. Mater. Trans. A 47 (2015) 26-32. https://doi.org/10.1007/s11661-015-3216-6
  17. N.A. Giang, M. Kuna, G. Huetter, Influence of carbide particles on crack initiation and propagation with competing ductile-brittle transition in ferritic steel, Theor. Appl. Fract. Mech. 92 (2017) 89-98. https://doi.org/10.1016/j.tafmec.2017.05.015
  18. J.E. Jam, M. Abolghasemzadeh, H. Salavati, Y. Alizadeh, The effect of notch tip position on the charpy impact energy for bainitic and martensitic functionally graded steels, Strength Mater. 46 (2014) 700-716. https://doi.org/10.1007/s11223-014-9604-0
  19. R. Wu, J. Li, Y. Su, S. Liu, Z. Yu, Improved uniformity of hardness by continuous low temperature bainitic transformation in prehardened mold steel with large section, Mater. Sci. Eng. A 706 (2017) 15-21. https://doi.org/10.1016/j.msea.2017.08.104
  20. C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Analysis of fracture toughness in high CoeNi secondary hardening steel using FEM, Mater. Sci. Eng. A 646 (2015) 1-7. https://doi.org/10.1016/j.msea.2015.08.003
  21. G. Seisson, D. Hebert, I. Bertron, J.M. Chevalier, L. Hallo, E. Lescoute, L. Videau, P. Combis, F. Guillet, M. Boustie, L. Berthe, Dynamic cratering of graphite: experimental results and simulations, Int. J. Impact Eng. 63 (2014) 18-28. https://doi.org/10.1016/j.ijimpeng.2013.08.001
  22. R. Cao, J. Li, D.S. Liu, J.Y. Ma, J.H. Chen, Micromechanism of decrease of impact toughness in coarse-grain heat-affected zone of HSLA steel with increasing welding heat input, Metall. Mater. Trans. A 46 (2015) 2999-3014. https://doi.org/10.1007/s11661-015-2916-2
  23. V. Carollo, J. Reinoso, M. Paggi, A 3D finite strain model for intralayer and interlayer crack simulation coupling the phase field approach and cohesive zone model, Comps. Struct. 182 (2017) 636-651. https://doi.org/10.1016/j.compstruct.2017.08.095
  24. Y. Xu, Y. Guo, L. Liang, Y. Liu, X. Wang, A unified cohesive zone model for simulating adhesive failure of composite structures and its parameter identification, Comps. Struct. 182 (2017) 555-565. https://doi.org/10.1016/j.compstruct.2017.09.012
  25. A. Pineau, Modeling ductile to brittle fracture transition in steels-micromechanical and physical challenges, Int. J. Fract. 150 (2008) 129-156. https://doi.org/10.1007/s10704-008-9232-4
  26. H. Zhang, S. Li, G. Liu, Y. Wang, Effects of hot working on the microstructure and thermal ageing impact fracture behaviors of Z3CN20-09M duplex stainless steel, Acta Metall. Sin. 53 (2017) 531-538.
  27. S.S.M. Tavares, M.B. Silva, M.C.S. de Macedo, T.R. Strohaecker, V.M. Costa, Characterization of fracture behavior of a Ti alloyed supermartensitic 12%Cr stainless steel using Charpy instrumented impact tests, Eng. Fail. Anal. 82 (2017) 695-702. https://doi.org/10.1016/j.engfailanal.2017.06.002
  28. M. Perez, M. Dumont, D. Acevedo-Reyes, Implementation of classical nucleation and growth theories for precipitation, Acta Mater. 56 (2008) 2119-2132. https://doi.org/10.1016/j.actamat.2007.12.050
  29. P. Wang, F. Liu, Y.P. Lu, C.L. Yang, G.C. Yang, Y.H. Zhou, Grain refinement and coarsening in hypercooled solidification of eutectic alloy, J. Cryst. Growth 310 (2008) 4309-4313. https://doi.org/10.1016/j.jcrysgro.2008.07.037
  30. C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Microstructure analysis and yield strength simulation in high CoeNi secondary hardening steel, Mater. Sci. Eng. A 669 (2016) 312-317. https://doi.org/10.1016/j.msea.2016.05.069
  31. P.V. Bizyukov, S.R. Giese, Effects of Zr, Ti, and Al additions on nonmetallic inclusions and impact toughness of cast low-alloy steel, J. Mater. Eng. Perform. 26 (2017) 1878-1889. https://doi.org/10.1007/s11665-017-2583-0
  32. A. Ghosh, P. Modak, R. Dutta, D. Chakrabarti, Effect of MnS inclusion and crystallographic texture on anisotropy in Charpy impact toughness of low carbon ferritic steel, Mater. Sci. Eng. A 654 (2016) 298-308. https://doi.org/10.1016/j.msea.2015.12.047

Cited by

  1. Application of cohesive zone model to large scale circumferential through-wall and 360° surface cracked pipes under static and dynamic loadings vol.53, pp.3, 2019, https://doi.org/10.1016/j.net.2020.07.041