Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.4.311

Effect of Cobalt Contents on the Microstructure and Charpy Impact Properties of Ferritic/martensitic Oxide Dispersion Strengthened Steel  

Kwon, Daehyun (Department of Convergence Technology for Heavy Industries, University of Ulsan)
Noh, Sanghoon (Nuclear Materials Division, Korea Atomic Energy Research Institute (KAERI))
Lee, Jung Gu (Department of Convergence Technology for Heavy Industries, University of Ulsan)
Publication Information
Journal of Powder Materials / v.27, no.4, 2020 , pp. 311-317 More about this Journal
Abstract
In this study, the effects of Co content on the microstructure and Charpy impact properties of Fe-Cr-W ferritic/martensitic oxide dispersion strengthened (F/M ODS) steels are investigated. F/M ODS steels with 0-5 wt% Co are fabricated by mechanical alloying, followed by hot isostatic pressing, hot-rolling, and normalizing/tempering heat treatment. All the steels commonly exhibit two-phase microstructures consisting of ferrite and tempered martensite. The volume fraction of ferrite increases with the increase in the Co content, since the Co element considerably lowers the hardenability of the F/M ODS steel. Despite the lowest volume fraction of tempered martensite, the F/M ODS steel with 5 wt% Co shows the highest micro-Vickers hardness, owing to the solid solution-hardening effect of the alloyed Co. The high hardness of the steel improves the resistance to fracture initiation, thereby resulting in the enhanced fracture initiation energy in a Charpy impact test at - 40℃. Furthermore, the addition of Co suppresses the formation of coarse oxide inclusions in the F/M ODS steel, while simultaneously providing a high resistance to fracture propagation. Owing to these combined effects of Co, the Charpy impact energy of the F/M ODS steel increases gradually with the increase in the Co content.
Keywords
Oxide dispersion strengthened steel; Cobalt; Charpy impact property; Microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Zheng, Y. Li, J. Zhang, J. Shen, T. Nagasaka, T. Muroga and H. Abe: Mater. Sci. Eng. A, 783 (2020) 139292.   DOI
2 J. M. Byun, C. W. Park and Y. D. Kim: Met. Mater. Int., 24 (2018) 1309.   DOI
3 Y. Shi, Z. Lu, L. Yu, R. Xie, Y. Ren and G. Yang: Mater. Sci. Eng. A, 774 (2020) 138937.   DOI
4 X. Zhou, Z. Ma, L. Yu, Y, Hung, H. Li and Y. Liu: Met. Mater. Int., 25 (2019) 168.   DOI
5 R. Lindau, A. Moslang, M. Schirra, P. Schlossmacher and M. Klimenkov: J. Nucl. Mater., 307-311 (2002) 769.   DOI
6 Z. Oksiuta and N. Baluc: J. Nucl. Mater., 386-388 (2009) 426.   DOI
7 J. Chao, C. Capdevila, M. Serrano, A. Garcia-Junceda, J. A. Jimenez and M. K. Miller: Mater. Des., 53 (2014) 1037.   DOI
8 L. Helis, Y. Toda, T. Hara, H. Miyazaki and F. Abe: Mater. Sci. Eng. A, 510-511 (2009) 88.   DOI
9 T. Sourmail and C. Garcia-Mateo: Comput. Mater. Sci., 34 (2005) 323.   DOI
10 K. Yamada, M. Igarashi, S. Muneki and F. Abe: ISIJ Int., 43 (2003) 1438.   DOI
11 K.-N. Jang, T.-K. Kim and K.-T. Kim: Nucl. Eng. Technol., 51 (2019) 249.   DOI
12 B. P. Sharoov and V. N. Zikeev: Met. Sci. and Heat Treat., 19 (1977) 265.   DOI
13 Yoshiharu Mae: Int. J. Mater. Sci. Appl., 6 (2017) 200.   DOI
14 G. Zhang, Z, Zhou, M. Wang, S. Li, L. Zou and L. Zhang: Fusion Eng. Des., 89 (2014) 280.   DOI