• Title/Summary/Keyword: fermentation technology

Search Result 2,816, Processing Time 0.034 seconds

Direct Fermentation of Potato Starch in Wastewater to Lactic Acid by Rhizopus oryzae

  • Huang, Li-Ping;Bo Jin;Paul Lant;Xianliang Qiao;Jingwen Chen;Wence Sun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.245-251
    • /
    • 2004
  • The fungal species of Rhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/ L at pH 6.0 and 30$^{\circ}C$ was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%∼85.5% associated with 1.5∼2.0 g/L fungal biomass produced in 36 h of fermentation.

Efficient Isolation and Characterization of a Cellulase Hyperproducing Mutant Strain of Trichoderma reesei

  • Zou, Zongsheng;Zhao, Yunying;Zhang, Tingzhou;Xu, Jiaxing;He, Aiyong;Deng, Yu
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1473-1481
    • /
    • 2018
  • A cellulase hyperproducing mutant strain, JNDY-13, was obtained using the ARTP mutation system and with Trichoderma reesei RUT-C30 as the parent strain. Whole-genome sequencing of JNDY-13 confirmed that 105 of the 653 SNPs were point mutations, 336 mutations were deletions and 165 were insertions. Moreover, 99 mutations were insertions and duplications. Among all the mutations, the one that occurred in the galactokinase gene might be related to the production of cellulases in T. reesei JNDY-13. Moreover, the up-regulation of cellulase and hemicellulase genes in JNDY-13 might contribute to higher cellulases production. Under optimal conditions, the highest cellulase activity by batch fermentation reached 4.35 U/ml, and the highest activity of fed-batch fermentation achieved was 5.40 U/ml.

Enhanced Production of Epothilone by Immobilized Sorangium cellulosum in Porous Ceramics

  • Gong, Guo-Li;Huang, Yu-Ying;Liu, Li-Li;Chen, Xue-Feng;Liu, Huan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1653-1659
    • /
    • 2015
  • Epothilone, which is produced by the myxobacterium Sorangium cellulosum, contributes significant value in medicinal development. However, under submerged culture conditions, S. cellulosum will accumulate to form bacterial clumps, which hinder nutrient and metabolite transportation. Therefore, the production of epothilone by liquid fermentation is limited. In this study, diatomite-based porous ceramics were made from diatomite, paraffin, and poremaking agent (saw dust). Appropriate methods to modify the porous ceramics were also identified. After optimizing the preparation and modification conditions, we determined the optimal prescription to prepare high-performance porous ceramics. The structure of porous ceramics can provide a solid surface area where S. cellulosum can grow and metabolize to prevent the formation of bacterial clumps. S. cellulosum cells that do not form clumps will change their erratic metabolic behavior under submerged culture conditions. As a result, the unstable production of epothilone by this strain can be changed in the fermentation process, and the purpose of increasing epothilone production can be achieved. After 8 days of fermentation under optimized conditions, the epothilone yield reached 90.2 mg/l, which was increased four times compared with the fermentation without porous ceramics.

The Application of Thermotolerant Yeast Kluyveromyces marxianus as a Potential Industrial Workhorse for Biofuel Production

  • Park, Jae-Bum;Kim, Jin-Seong;Jang, Seung-Won;Hong, Eunsoo;Ha, Suk-Jin
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.125-131
    • /
    • 2015
  • Kluyveromyces marxianus is a well-known thermotolerant yeast. Although Saccharomyces cerevisiae is the most commonly used yeast species for ethanol production, the thermotolerant K. marxianus is more suitable for simultaneous saccharification and fermentation (SSF) processes. This is because enzymatic saccharification usually requires a higher temperature than that needed for the optimum growth of S. cerevisiae. In this study, we compared the fermentation patterns of S. cerevisiae and K. marxianus under various temperatures of fermentation. The results show that at a fermentation temperature of $45^{\circ}C$, K. marxianus exhibited more than two fold higher growth rate and ethanol production rate in comparison to S. cerevisiae. For SSF using starch or corn stover as the sole carbon source by K. marxianus, the high temperature ($45^{\circ}C$) fermentations showed higher enzymatic activities and ethanol production compared to SSF at $30^{\circ}C$. These results demonstrate the potential of the thermotolerant yeast K. marxianus for SSF in the industrial production of biofuels.

Improvement in the Quality of Kimchi by Fermentation with Leuconostoc mesenteroides ATCC 8293 as Starter Culture

  • Li, Ling;Yan, Yu;Ding, Weiqi;Gong, Jinyan;Xiao, Gongnian
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.533-538
    • /
    • 2020
  • To investigate the effect of the predominant microorganisms in kimchi on quality, Leuconostoc mesenteroides ATCC 8293 was used as starter culture during kimchi fermentation. A higher number of lactic acid bacteria and lower initial pH were observed in starter kimchi than in non-starter kimchi in the early stage of fermentation. The concentrations of the main metabolite, lactic acid, were 69.88 mM and 83.85 mM for the non-starter and starter fermented kimchi, respectively. The free sugar concentrations of starter kimchi decreased earlier than those of non-starter kimchi, and the levels of free sugars in both kimchi samples decreased during fermentation. At the end of fermentation, non-starter kimchi had a softer texture than starter kimchi, suggesting that L. mesenteroides is useful in extending shelf life. Sensory evaluation showed that starter kimchi had higher sourness and lower bitterness and astringency values, resulting in high sensory quality. These results suggest that the L. mesenteroides ATCC 8293 strain could be a potential starter culture in kimchi.

Fermentation Characteristics for Extruded Hair of Tissue Cultured Mountain Ginseng

  • Ji, Yan-Qing;Yang, Hye-Jin;Tie, Jin;Kim, Mi-Hwan;Yang, Jae-Ghan;Chung, Ki-Wha;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.2
    • /
    • pp.156-161
    • /
    • 2009
  • Effects of extrusion conditions (barrel temperature and moisture content) and fermentation time on the antioxidant properties of root hair of tissue cultured raw mountain ginseng (MG) were investigated. The barrel temperature/ moisture combinations were: $110^{\circ}C$/25% (MG1), $140^{\circ}C$/25% (MG2), $110^{\circ}C$/35% (MG3) and $140^{\circ}C$/35% (MG4). Red ginseng (RG) was also investigated. The contents of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and polyphenolic increased after fermentation in RG and even more in MG, while extruded ginseng samples exhibited little change. The increases noted with MG and RG occurred during the first 4 days of fermentation. DPPH radical scavenging activity decreased after extrusion and was significantly higher in MG (20.93%) than RG (1.63%) on the first day of fermentation. DPPH radical scavenging activity in the barrel temperature/moisture combinations were 19.01% (MG1), 14.45% (MG2), 20.37% (MG3) and 15.78% (MG4). The content of polyphenolic compounds in ginseng samples displayed a similar trend. Acidic polysaccharide in RG and MG1${\sim}$MG4 were higher than MG, but decreased during fermentation. Crude saponin in RG and MG1${\sim}$MG4 decreased after 15 days of fermentation, while increasing in MG.

Fermentation Characteristics and Sensory Characteristics of Makgeolli with Dried Citron (Citrus junos SIEB ex TANAKA) Peel (건조유자과피를 첨가하여 제조한 막걸리의 발효기간 중 이화학적 특성 및 제조된 막걸리의 관능적 특성)

  • Yang, Hee-Sun;Hwang, Su-Jung;Lee, Sung-Hee;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.603-610
    • /
    • 2011
  • This study was performed to examine the physicochemical characteristics and sensory properties of makgeolli with dried citron peel and levels (3, 6, and 9%) of citron (Citrus junos) in makgeolli during fermentation with two-step-brewing. The pH of makgeolli with citron dried peel increased within 5 days of fermentation, and decreased until 11 days of fermentation. Total acidity increased after 3 days of fermentation then decreased after 5 days of fermentation, but continued to increase slightly up to 12 days. Changes in alcohol content and amino acidity increased during fermentation. A sensoryevaluation of appearance, flavor, sourness, sweetness, bitterness, and overall acceptance of makgeolli with citron dried peel showed lower values than those of the control.

Enhanced Antioxidant Activity of Berry Juice through Acetic Acid Bacteria Fermentation (초산균 발효에 의한 베리 농축액의 항산화 활성 증진 효과)

  • Park, Joong-Hee;Kwon, Hun-Joo;Kwon, Deok-Ho;Park, Jae-Bum;Nam, Hee-Sop;Lee, Do Yup;Kim, Myoung-Dong;Ha, Suk-Jin
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.238-244
    • /
    • 2017
  • Antioxidant activities of blackberry juice and aronia juice were enhanced when fermentation was performed by acetic acid bacteria. Acetobacter pasteurianus exhibited 19.84% improvement of antioxidant activity (from $198.12{\pm}2.03$ to $237.42{\pm}7.32{\mu}mol\;TE/g$) after 12 h fermentation of blackberry juice among four acetic acid bacteria. And A. pasteurianus sub sp. Pasteurianus exhibited 9.62% improvement of antioxidant activity (from $204.25{\pm}3.98$ to $223.89{\pm}5.52{\mu}mol\;TE/g$) after 12 h fermentation of aronia juice. Metabolites of blackberry juice were analyzed to investigate the enhancement of antioxidant activity before and after fermentation. As results, Quercetin 7-(rhamnosylglucoside), nicotinic acid adenine dinucleotide, and quercetin 3-O-(6"-acetyl-glucoside) were significantly increased after fermentation by A. pasteurianus.

Effects of Amino Acids Fermentation By-product on Fermentation Quality and In situ Rumen Degradability of Italian Ryegrass (Lolium multiflorum) Silage

  • Yimiti, W.;Yahaya, M.S.;Hiraoka, H.;Yamamoto, Y.;Inui, K.;Takeda, M.;Tsukahara, A.;Goto, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.633-637
    • /
    • 2004
  • The experiment of silage for preservation of fresh Italian ryegrass (Lolium multiflorum) was carried out to examine whether the fermentation quality and microbial degradation in the rumen can be altered by the treatment of amino acids fermentation byproduct (AFB). The plant was ensiled for 40 days with 4 treatments of different ratios of AFB and sugarcane molasses (SCM) mixture. The treatment 2 (T2, AFB:SCM=100:0) and treatment 3 (T3, AFB:SCM=40:60) silages showed higher (p<0.05) concentrations of lactic acids, lower (p<0.05) pH and dry matter (DM) losses than the Control (T1, none additive) and treatment (T4, AFB:SCM=0:100) silages. The treatments 2 and 3 contained higher (p<0.05) DM and crude protein contents in silages compared to treatments 1 and 4 silages. The NDF, ADF and cellulose contents were also lower (p<0.05) in T2, T3 and T4 silages than T1 silage and fresh material before ensiled. The in situ rumen DM, NDF, ADF, hemicellulose and cellulose degradability was also higher (p<0.05) in T2, T3 and T4 silages than T1 silage, while the highest improvement was achieved with addition of AFB:SCM at level of 40:60 at ensiling. The result in this study indicates that the addition of AFB and SCM additives improved the silage fermentation and cell wall degradability of Italian ryegrass silage.

Monitoring of Alcohol Fermentation Condition with Brown Rice Using Raw Starch-Digesting Enzyme (생전분 분해효소를 이용한 현미 알콜발효조건의 모니터링)

  • Lee, Oh-Seuk;Jeong, Yong-Jin;Ha, Young-Duck;Kim, Kyungeun;Shin, Jin-Suk;Kwon, Hun
    • Food Science and Preservation
    • /
    • v.8 no.4
    • /
    • pp.412-418
    • /
    • 2001
  • This study was carried out to set up alcohol fermentation condition for uncooked brown rice. Response surface methodology(RSM) was applied to optimize and monitor of the alcohol fermentation condition with uncooked brown rice. The optimal yeast strain for fermentation of uncooked brown rice was S. cerevisiae GRJ. The polynomial equation for alcohol contents, brix pH and total acditiy showed 0.8828, 0.8409, 0.9431 and 0.9280 of R$^2$, respectively. Optimum range of uncooked alcohol fermentation for maximum alcohol contents were 0.34%(w/w) of enzyme concentration and 350%(w/w) of added water content, respectively. Predicted values at optimum alcohol fermentation condition agreed with experimental values.

  • PDF