Browse > Article
http://dx.doi.org/10.7841/ksbbj.2015.30.3.125

The Application of Thermotolerant Yeast Kluyveromyces marxianus as a Potential Industrial Workhorse for Biofuel Production  

Park, Jae-Bum (Department of Bioengineering and Technology, Kangwon National University)
Kim, Jin-Seong (Department of Bioengineering and Technology, Kangwon National University)
Jang, Seung-Won (Department of Bioengineering and Technology, Kangwon National University)
Hong, Eunsoo (Department of Molecular Science and Technology, Graduate School of Interdisciplinary Program, Ajou University)
Ha, Suk-Jin (Department of Bioengineering and Technology, Kangwon National University)
Publication Information
KSBB Journal / v.30, no.3, 2015 , pp. 125-131 More about this Journal
Abstract
Kluyveromyces marxianus is a well-known thermotolerant yeast. Although Saccharomyces cerevisiae is the most commonly used yeast species for ethanol production, the thermotolerant K. marxianus is more suitable for simultaneous saccharification and fermentation (SSF) processes. This is because enzymatic saccharification usually requires a higher temperature than that needed for the optimum growth of S. cerevisiae. In this study, we compared the fermentation patterns of S. cerevisiae and K. marxianus under various temperatures of fermentation. The results show that at a fermentation temperature of $45^{\circ}C$, K. marxianus exhibited more than two fold higher growth rate and ethanol production rate in comparison to S. cerevisiae. For SSF using starch or corn stover as the sole carbon source by K. marxianus, the high temperature ($45^{\circ}C$) fermentations showed higher enzymatic activities and ethanol production compared to SSF at $30^{\circ}C$. These results demonstrate the potential of the thermotolerant yeast K. marxianus for SSF in the industrial production of biofuels.
Keywords
Kluyveromyces marxianus; Thermotolerant; Simultaneous saccharification and fermentation; Biofuel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lark, N., Y. Xia, C.-G. Qin, C. S. Gong, and G. T. Tsao (1997) Production of ethanol from recycled paper sludge using cellulase and yeast, Kluveromyces marxianus. Biomass Bioenergy. 12: 135-143.   DOI
2 Loser, C., T. Urit, A. Stukert, and T. Bley (2013) Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale. J. Biotechnol. 163: 17-23.   DOI
3 Fonseca, G., E. Heinzle, C. Wittmann, and A. Gombert (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79: 339-354.   DOI
4 Limtong, S., C. Sringiew, and W. Yongmanitchai (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 98: 3367-3374.   DOI
5 Heo, P., T.-J. Yang, S.-C. Chung, Y. Cheon, J.-S. Kim, J.-B. Park, H. M. Koo, K. M. Cho, J.-H. Seo, J. C. Park, and D.-H. Kweon (2013) Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. J. Biotechnol. 167: 323-325.   DOI
6 Jeong, H., D.-H. Lee, S. H. Kim, H.-J. Kim, K. Lee, J. Y. Song, B. K. Kim, B. H. Sung, J. C. Park, J. H. Sohn, H. M. Koo, and J. F. Kim (2012) Genome Sequence of the Thermotolerant Yeast Kluyveromyces marxianus var. marxianus KCTC 17555. Eukaryotic Cell. 11: 1584-1585.   DOI
7 Pecota, D. C., V. Rajgarhia, and N. A. Da Silva (2007) Sequential gene integration for the engineering of Kluyveromyces marxianus. J. Biotechnol. 127: 408-416.   DOI   ScienceOn
8 Huang, G., F. Chen, D. Wei, X. Zhang, and G. Chen (2010) Biodiesel production by microalgal biotechnology. Appl. Energ. 87: 38-46.   DOI
9 Najafi, G., B. Ghobadian, T. Tavakoli, and T. Yusaf (2009) Potential of bioethanol production from agricultural wastes in Iran. Renew. Sust. Energ. Rev. 13: 1418-1427.   DOI
10 Swana, J., Y. Yang, M. Behnam, and R. Thompson (2011) An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Bioresour. Technol. 102: 2112-2117.   DOI
11 Farrell, A. E., R. J. Plevin, B. T. Turner, A. D. Jones, M. O'Hare, and D. M. Kammen (2006) Ethanol can contribute to energy and environmental goals. Science. 311: 506-508.   DOI   ScienceOn
12 Ha, S. J., J. M. Galazka, S. R. Kim, J. H. Choi, X. Yang, J. H. Seo, N. L. Glass, J. H. Cate, and Y. S. Jin (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A. 108: 504-509.   DOI
13 Ho, N. W. Y., Z. Chen, and A. P. Brainard (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64: 1852-1859.
14 Jin, Y. S., H. Ni, J. M. Laplaza, and T. W. Jeffries (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol. 69: 495-503.   DOI
15 Toivari, M. H., A. Aristidou, L. Ruohonen, and M. Penttila (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metab. Eng. 3: 236-249.   DOI
16 Nakamura, N., R. Yamada, S. Katahira, T. Tanaka, H. Fukuda, and A. Kondo (2008) Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of beta-glucosidase on its cell surface. Enzyme Microb. Technol. 43: 233-236.   DOI
17 Aeling, K., K. Salmon, J. Laplaza, L. Li, J. Headman, A. Hutagalung, and S. Picataggio (2012) Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 39: 1597-1604.   DOI
18 Ha, S. J., S. R. Kim, H. Kim, J. Du, J. H. D. Cate, and Y. S. Jin (2013) Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Bioresour. Technol. 149: 525-531.   DOI
19 Sedlak, M. and N. Ho (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces; yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 114: 403-416.   DOI
20 Matsushika, A., H. Inoue, K. Murakami, O. Takimura, and S. Sawayama (2009) Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technol. 100: 2392-2398.   DOI
21 Davison, B., J. Lee, M. Finkelstein, J. McMillan, D. Schell, J. Farmer, and M. Newman (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor. Humana Press
22 Kumar, R., and C. E. Wyman (2009) Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol. Bioeng. 102: 457-467.   DOI
23 Ghosh, P., N. B. Pamment, and W. R. B. Martin (1982) Simultaneous saccharification and fermentation of cellulose: effect of betad-glucosidase activity and ethanol inhibition of cellulases. Enzyme Microb. Technol. 4: 425-430.   DOI
24 Wyman, C. E., S. R. Decker, M. E. Himmel, J. W. Brady, C. E. Skopec, and L. Viikari (2005) Hydrolysis of cellulose and hemicellulose. Polysaccharides: Structural Diversity and Functional Versatility (second ed.). 995-1033.
25 Cheon, Y., J.-S. Kim, J.-B. Park, P. Heo, J. H. Lim, G. Y. Jung, J.- H. Seo, J. H. Park, H. M. Koo, K. M. Cho, J.-B. Park, S.-J. Ha, and D.-H. Kweon (2014) A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus. J. Biotechnol. 182??83: 30-36.   DOI