DOI QR코드

DOI QR Code

The Application of Thermotolerant Yeast Kluyveromyces marxianus as a Potential Industrial Workhorse for Biofuel Production

  • Park, Jae-Bum (Department of Bioengineering and Technology, Kangwon National University) ;
  • Kim, Jin-Seong (Department of Bioengineering and Technology, Kangwon National University) ;
  • Jang, Seung-Won (Department of Bioengineering and Technology, Kangwon National University) ;
  • Hong, Eunsoo (Department of Molecular Science and Technology, Graduate School of Interdisciplinary Program, Ajou University) ;
  • Ha, Suk-Jin (Department of Bioengineering and Technology, Kangwon National University)
  • Accepted : 2015.06.23
  • Published : 2015.06.27

Abstract

Kluyveromyces marxianus is a well-known thermotolerant yeast. Although Saccharomyces cerevisiae is the most commonly used yeast species for ethanol production, the thermotolerant K. marxianus is more suitable for simultaneous saccharification and fermentation (SSF) processes. This is because enzymatic saccharification usually requires a higher temperature than that needed for the optimum growth of S. cerevisiae. In this study, we compared the fermentation patterns of S. cerevisiae and K. marxianus under various temperatures of fermentation. The results show that at a fermentation temperature of $45^{\circ}C$, K. marxianus exhibited more than two fold higher growth rate and ethanol production rate in comparison to S. cerevisiae. For SSF using starch or corn stover as the sole carbon source by K. marxianus, the high temperature ($45^{\circ}C$) fermentations showed higher enzymatic activities and ethanol production compared to SSF at $30^{\circ}C$. These results demonstrate the potential of the thermotolerant yeast K. marxianus for SSF in the industrial production of biofuels.

Keywords

References

  1. Huang, G., F. Chen, D. Wei, X. Zhang, and G. Chen (2010) Biodiesel production by microalgal biotechnology. Appl. Energ. 87: 38-46. https://doi.org/10.1016/j.apenergy.2009.06.016
  2. Najafi, G., B. Ghobadian, T. Tavakoli, and T. Yusaf (2009) Potential of bioethanol production from agricultural wastes in Iran. Renew. Sust. Energ. Rev. 13: 1418-1427. https://doi.org/10.1016/j.rser.2008.08.010
  3. Swana, J., Y. Yang, M. Behnam, and R. Thompson (2011) An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Bioresour. Technol. 102: 2112-2117. https://doi.org/10.1016/j.biortech.2010.08.051
  4. Farrell, A. E., R. J. Plevin, B. T. Turner, A. D. Jones, M. O'Hare, and D. M. Kammen (2006) Ethanol can contribute to energy and environmental goals. Science. 311: 506-508. https://doi.org/10.1126/science.1121416
  5. Ho, N. W. Y., Z. Chen, and A. P. Brainard (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64: 1852-1859.
  6. Jin, Y. S., H. Ni, J. M. Laplaza, and T. W. Jeffries (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol. 69: 495-503. https://doi.org/10.1128/AEM.69.1.495-503.2003
  7. Toivari, M. H., A. Aristidou, L. Ruohonen, and M. Penttila (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metab. Eng. 3: 236-249. https://doi.org/10.1006/mben.2000.0191
  8. Ha, S. J., J. M. Galazka, S. R. Kim, J. H. Choi, X. Yang, J. H. Seo, N. L. Glass, J. H. Cate, and Y. S. Jin (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A. 108: 504-509. https://doi.org/10.1073/pnas.1010456108
  9. Nakamura, N., R. Yamada, S. Katahira, T. Tanaka, H. Fukuda, and A. Kondo (2008) Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of beta-glucosidase on its cell surface. Enzyme Microb. Technol. 43: 233-236. https://doi.org/10.1016/j.enzmictec.2008.04.003
  10. Aeling, K., K. Salmon, J. Laplaza, L. Li, J. Headman, A. Hutagalung, and S. Picataggio (2012) Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 39: 1597-1604. https://doi.org/10.1007/s10295-012-1169-y
  11. Ha, S. J., S. R. Kim, H. Kim, J. Du, J. H. D. Cate, and Y. S. Jin (2013) Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Bioresour. Technol. 149: 525-531. https://doi.org/10.1016/j.biortech.2013.09.082
  12. Matsushika, A., H. Inoue, K. Murakami, O. Takimura, and S. Sawayama (2009) Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technol. 100: 2392-2398. https://doi.org/10.1016/j.biortech.2008.11.047
  13. Sedlak, M. and N. Ho (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces; yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 114: 403-416. https://doi.org/10.1385/ABAB:114:1-3:403
  14. Davison, B., J. Lee, M. Finkelstein, J. McMillan, D. Schell, J. Farmer, and M. Newman (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor. Humana Press
  15. Kumar, R., and C. E. Wyman (2009) Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol. Bioeng. 102: 457-467. https://doi.org/10.1002/bit.22068
  16. Ghosh, P., N. B. Pamment, and W. R. B. Martin (1982) Simultaneous saccharification and fermentation of cellulose: effect of betad-glucosidase activity and ethanol inhibition of cellulases. Enzyme Microb. Technol. 4: 425-430. https://doi.org/10.1016/0141-0229(82)90075-8
  17. Wyman, C. E., S. R. Decker, M. E. Himmel, J. W. Brady, C. E. Skopec, and L. Viikari (2005) Hydrolysis of cellulose and hemicellulose. Polysaccharides: Structural Diversity and Functional Versatility (second ed.). 995-1033.
  18. Cheon, Y., J.-S. Kim, J.-B. Park, P. Heo, J. H. Lim, G. Y. Jung, J.- H. Seo, J. H. Park, H. M. Koo, K. M. Cho, J.-B. Park, S.-J. Ha, and D.-H. Kweon (2014) A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus. J. Biotechnol. 182??83: 30-36. https://doi.org/10.1016/j.jbiotec.2014.04.010
  19. Lark, N., Y. Xia, C.-G. Qin, C. S. Gong, and G. T. Tsao (1997) Production of ethanol from recycled paper sludge using cellulase and yeast, Kluveromyces marxianus. Biomass Bioenergy. 12: 135-143. https://doi.org/10.1016/S0961-9534(96)00069-4
  20. Loser, C., T. Urit, A. Stukert, and T. Bley (2013) Formation of ethyl acetate from whey by Kluyveromyces marxianus on a pilot scale. J. Biotechnol. 163: 17-23. https://doi.org/10.1016/j.jbiotec.2012.10.009
  21. Fonseca, G., E. Heinzle, C. Wittmann, and A. Gombert (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79: 339-354. https://doi.org/10.1007/s00253-008-1458-6
  22. Limtong, S., C. Sringiew, and W. Yongmanitchai (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 98: 3367-3374. https://doi.org/10.1016/j.biortech.2006.10.044
  23. Heo, P., T.-J. Yang, S.-C. Chung, Y. Cheon, J.-S. Kim, J.-B. Park, H. M. Koo, K. M. Cho, J.-H. Seo, J. C. Park, and D.-H. Kweon (2013) Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. J. Biotechnol. 167: 323-325. https://doi.org/10.1016/j.jbiotec.2013.06.020
  24. Jeong, H., D.-H. Lee, S. H. Kim, H.-J. Kim, K. Lee, J. Y. Song, B. K. Kim, B. H. Sung, J. C. Park, J. H. Sohn, H. M. Koo, and J. F. Kim (2012) Genome Sequence of the Thermotolerant Yeast Kluyveromyces marxianus var. marxianus KCTC 17555. Eukaryotic Cell. 11: 1584-1585. https://doi.org/10.1128/EC.00260-12
  25. Pecota, D. C., V. Rajgarhia, and N. A. Da Silva (2007) Sequential gene integration for the engineering of Kluyveromyces marxianus. J. Biotechnol. 127: 408-416. https://doi.org/10.1016/j.jbiotec.2006.07.031

Cited by

  1. Sequence analysis of KmXYL1 genes and verification of thermotolerant enzymatic activities of xylose reductase from four Kluyveromyces marxianus strains vol.21, pp.5, 2016, https://doi.org/10.1007/s12257-016-0363-6
  2. Physiological and Metabolomic Analysis of Issatchenkia orientalis MTY1 With Multiple Tolerance for Cellulosic Bioethanol Production 2017, https://doi.org/10.1002/biot.201700110
  3. Ethanol production from xylose is highly increased by the Kluyveromyces marxianus mutant 17694-DH1 pp.1615-7605, 2018, https://doi.org/10.1007/s00449-018-2014-0
  4. Xylitol Production by Kluyveromyces marxianus 36907-FMEL1 at High Temperature was Considerably Increased through the Optimization of Agitation Conditions vol.45, pp.1, 2015, https://doi.org/10.4014/mbl.1611.11003
  5. Overexpression of Endogenous Xylose Reductase Enhanced Xylitol Productivity at 40 °C by Thermotolerant Yeast Kluyveromyces marxianus vol.189, pp.2, 2015, https://doi.org/10.1007/s12010-019-03019-9
  6. Alleviation of catabolite repression in Kluyveromyces marxianus : the thermotolerant SBK1 mutant simultaneously coferments glucose and xylose vol.12, pp.None, 2015, https://doi.org/10.1186/s13068-019-1431-x
  7. Overexpression of Mutant Galactose Permease (ScGal2_N376F) Effective for Utilization of Glucose/Xylose or Glucose/Galactose Mixture by Engineered Kluyveromyces marxianus vol.30, pp.12, 2015, https://doi.org/10.4014/jmb.2008.08035