• Title/Summary/Keyword: fermentation degree

Search Result 231, Processing Time 0.034 seconds

Quality Characteristics of the Kochujang Prepared with Mixture of Meju and Koji during Fermentation (메주와 고오지를 혼용하여 담금한 고추장 숙성중의 품질특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.125-131
    • /
    • 2000
  • Quality characteristics of kochujang prepared with meju, koji and mixture of the two(meju+koji) were investigated during fermentation to improve quality of kochujang. During fermentation of kochujang, moisture content was in the range of $53.4{\sim}66.5%$, salt was $8.3{\sim}10.1%$, crude protein was $8.3{\sim}19.3%$ and pH of kochujang was $4.6{\sim}5.4$. Amino-nitrogen content increased during fermentation and the levels were $230{\sim}270\;mg%$ after 150 days of fermentation. The highest amino-nitrogen content was found in mixed kochujang at the beginning stage of fermentation, but in koji kochujang after 30 days of fermentation. Maximum reducing sugar content was $15.0{\sim}19.5%$ at 60th day of fermentation. The highest amino acid content of kochujang protein was found in meju kochujang followed by koji kochujang at the first stage of fermentation. The content of glutamic acid, a major amino acid was $1.38{\sim}3.66%$ of total amino acid content. High levels of aspartic acid, leucine, arginine, alanine and phenylalanine were found in the kochujangs. Mixed kochujang showed the highest L value among the samples until 30 days of fermentation. After that, the highest L value was found in meju kochujang. The highest degree of redness was observed in meju kochujang until 60 days of fermentation and in koji kochujang during $90{\sim}120$ days of fermentation.

  • PDF

Effect of Lactic Acid Bacteria notated to Kimchi Fermentation on the Quality of Bread (김치숙성 관련 젖산균이 식빵의 품질에 미치는 영향)

  • 이예경;박인경;김순동
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.11 no.5
    • /
    • pp.379-385
    • /
    • 2001
  • The effects of lactic acid bacteria from kimchi fermentation, specifically Lactobacillus plantarum(LP) and Leuconostoc mesenteroides (LM) on the quality of the bread product was investigated. The two types of bacteria were cultivated in the sterilized radish juice used for kimchi fermentation. The concentration of bacteria was measured at 3.0$\times$10$^{9}$ ~3.3$\times$10$^{9}$ /mL. The bacteria were added at the ratios of 5% and 10% to a mixture with wheat flour before subsequent dough fermentation. An LM+LP treatment to the mixture was also made at 5% of LP and 5% of LM. The measured pH in the dough with LM+LP was the lowest among all of treatments. The products of 5% LM treatment showed the shortest fermentation time. Loaf production by volume was the highest from the 10% LM treatment. The % of moisture loss of the bread during the shelf-storage was less when treated with lactic acid bacteria than when left untreated. The least moisture loss was observed when the bread was treated with the LM+LP mixture. Hardness of the bread also decreased with the presence of lactic acid bacteria. The order of hardness was: control > 5% LP > LM+LP > 5% LM > 17% LM > 10% LP. Staling degree of the bread when treated with lactic acid bacteria was lower than that of the control. The least staling occurred when treated with LM 10% and LP 10%.

  • PDF

Changes in Physicochemical Quality during the Seasoned and Fermented Alaska Pollack Roe with Vacuum Fermentation (조미 명란(明卵)의 진공발효 및 저장중 이화학적 품질 변화)

  • 김정욱;이성갑
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.353-358
    • /
    • 2003
  • Low salt-fermented product of alaska pollack roe were prepared tentatively and also discussed the retarding effect of fermentation period by vacuum. The results were as follows. The moisture content, pH and salinity decreased slightly, but the contents of VBN and total amino acids increased gradually during fermentation regardless of ripening types. pH and salinity showed little difference with ripening types, but moisture content was a little lower and the contents of VBN was some higher in non vacuum than those in vacuum, whereas total amino acid contents were greater in vacuum. In addition, total viable cell count were similar to trend of gentle decrement after increment to some degree but were higher in non vacuum than those in vacuum. Judging from the results of physicochemical analysis, it was showed that fermentation delayed in vacuum therefore it was considered that vacuum fermentation can be effective on shelf-life extension of jeot-gal.

Characterization and Production of Low Molecular Weight of Biopolymer by Weisella sp. strain YSK01 Isolated from Traditional Fermented Foods (전통 발효식품으로부터 분리된 Weisella sp. strain YSK01에 의한 저분자 Biopolymer 발효생산 공정 및 생성물의 특성)

  • Cho, Hyun Ah;Kim, Nam Chul;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.632-643
    • /
    • 2022
  • Although probiotics have been shown to improve health when consumed, recent studies have reported that they can cause unwanted side effects due to bacterial-human interactions. Therefore, the importance of prebiotics that can form beneficial microbiome in the gut has been emphasized. This study isolated and identified bacteria capable of producing biopoymer as a candidate prebiotic from traditional fermented foods. The isolated and identified strain was named WCYSK01 (Wissella sp. strain YSK01). The composition of the medium for culturing this strain was prepared by dissolving 3 g K2HPO4, 0.2 g MgSO4, 0.05 g CaCl2, 0.1 g NaCl in 1 L of distilled water. The LMBP(low molecular weight biopoymers) produced when fermentation was performed with sucrose and maltose as substrates were mainly consisted of DP3 (degree of polymer; isomaltotriose), DP4 (isomaltotetraose), DP5 (isomaltopentaose), and DP6 (isomaltoheptaose). The optimization of LMBP (low molecular weight of biopolymer) production was performed using the response surface methodology. The fermentation process temperature range of 18 to 32℃, the fermentation medium pH in the range of 5.1 to 7.9. The yield of LMBP production by the strain was found to be significantly affected by q fermentation temperature and pH. The optimal fermentation conditions were found at the normal point, and the production yield was more than 75% at pH 7.5 and temperature of 23℃.

Studies on Fermentation Conditions for-Cellulolytic enzymes Production using Trichoderma viride

  • 김종민;유두영
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1977.10a
    • /
    • pp.197.4-197
    • /
    • 1977
  • Efficient utilization of cellulosic material as renewable resources is drawing an increasing degree of attention in the scientific community. As part of our endeavor to improve the production of cellulase complex system, several factors that influence production of cellulolytic enzyme system have been studied.

  • PDF

Effects of Synchronicity of Carbohydrate and Protein Degradation on Rumen Fermentation Characteristics and Microbial Protein Synthesis

  • Seo, J.K.;Kim, M.H.;Yang, J.Y.;Kim, H.J.;Lee, C.H.;Kim, K.H.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.358-365
    • /
    • 2013
  • A series of in vitro studies were carried out to determine i) the effects of enzyme and formaldehyde treatment on the degradation characteristics of carbohydrate and protein sources and on the synchronicity of these processes, and ii) the effects of synchronizing carbohydrate and protein supply on rumen fermentation and microbial protein synthesis (MPS) in in vitro experiments. Untreated corn (C) and enzyme-treated corn (EC) were combined with soy bean meal with (ES) and without (S) enzyme treatment or formaldehyde treatment (FS). Six experimental feeds (CS, CES, CFS, ECS, ECES and ECFS) with different synchrony indices were prepared. Highly synchronous diets had the greatest dry matter (DM) digestibility when untreated corn was used. However, the degree of synchronicity did not influence DM digestibility when EC was mixed with various soybean meals. At time points of 12 h and 24 h of incubation, EC-containing diets showed lower ammonia-N concentrations than those of C-containing diets, irrespective of the degree of synchronicity, indicating that more efficient utilization of ammonia-N for MPS was achieved by ruminal microorganisms when EC was offered as a carbohydrate source. Within C-containing treatments, the purine base concentration increased as the diets were more synchronized. This effect was not observed when EC was offered. There were significant effects on VFA concentration of both C and S treatments and their interactions. Similar to purine concentrations, total VFA production and individual VFA concentration in the groups containing EC as an energy source was higher than those of other groups (CS, CES and CFS). The results of the present study suggested that the availability of energy or the protein source are the most limiting factors for rumen fermentation and MPS, rather than the degree of synchronicity.

Effects of Amylose Contents and Degree of Gelatinization of Rice Flour on In Vitro Starch Digestibility, Physical Characteristics, and Morphological Properties

  • Park, Ji Eun;Bae, In Young;Oh, Im Kyung;Lee, Hyeon Gyu
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.341-350
    • /
    • 2017
  • The relationship of in vitro starch digestibility and gel strength was investigated at various concentrations (10-30%) of rice cultivars with different amylose contents (27.9, 17.9, and 5.2%). As the rice flour concentration increased, predicted glycemic index decreased, but gel strength increased regardless of amylose contents. Gel strength correlated strongly with amylose content, whereas in vitro starch digestibility was more highly affected by rice flour concentration than by amylose contents. Moreover, the impact of degree of gelatinization on in vitro starch digestibility of high amylose rice was also examined in terms of structural features and rheological properties. The digestion rate of fully gelatinized flour was 1.7 times higher than that of native flour, while the disrupted structure with a different gelatinization degree during starch digestion was visually demonstrated through the X-ray diffraction and molecular distribution analysis. The rice flour changed from an A-type to a V-type pattern and showed difference in crystalline melting. The low molecular weight distribution increased with increasing degree of gelatinization during starch digestion. The apparent viscosity also increased with degree of gelatinization. These results demonstrated that the starch digestibility of rice was more affected by concentration than by amylose content, as well as by the degree of gelatinization due to structural difference.

Natural Dyeing of Silk, Cotton and Rayon Fabrics using Tea Leaves -Focusing on Green Tea, Oolong Tea, Black Tea, Dark Tea- (차에 의한 천연염색 연구 -녹차, 우롱차, 홍차, 흑차를 중심으로-)

  • Wang, Tian Tian;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.23 no.1
    • /
    • pp.64-73
    • /
    • 2019
  • The objective of this study was to investigate dyeing characteristics of silk, cotton and rayon fabrics using dyeing solution extracted from different varieties of tea. Comparative results of CIE Lab values of 360 pieces of dyed fabrics were studied to quantify the effects of dye concentrations (100%, 150%, and 200%) and mordants (Fe, Cu, Sn, Al). In addition, the color difference values (${\Delta}E$) of the dyed and mordanted fabrics were evaluated. The results of the study were as follows: First, among all of the 360 pieces of silk, cotton and rayon fabrics, the best dyeing effects was observed on silk fabrics. Second, the dyeing effect of the eight different types of tealeaves belonging to green tea, oolong tea, black tea, and dark tea tended to enhance as the degree of fermentation increased. Third, when the fabrics were mordanted with Fe, Cu, Sn, Al mordants, various colors such as brown, brownish red, brownish yellow, gray, and reddish brown were obtained.

A Study on Salt-fermented Seahorse added with Proteolytic Enzyme (Protamex)

  • LEE, In-Sook;LEE, Min-Ho;JANG, Kyung-Tae
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.6
    • /
    • pp.1-7
    • /
    • 2020
  • We compared the fermentation of 0 to 4 weeks by manufacturing a rapid low salt-fermented seahorse with a commercial Protamex added to the functional food, Hippocampus abdominalis. We studied amino acid composition, content and major amino acids related to flavor during the fermentation process of salt-fermented seahorse. In the enzyme-free group, it showed little change in the content of non-protein nitrogenous compounds, the content of amino acids and degree of hydrolysis. The Protamex enzyme treatment group was rapidly hydrolyzed in one week of ripening, resulting in increased non-protein nitrogenous compounds content, amino acid content and degree of hydrolysis, and minimal changes in the four weeks. The total amino acid contents ratio showed the highest content of glutamic acid in the enzyme additive group, glycine, alanine, which indicates sweet taste, and serine, the content of glycine, alanine, serine, and lysine, indicating sweet taste, has increased significantly over the enzyme-free group. Twenty species of free amino acid in the four-week of salt-fermented seahorse were detected. It detected 43.0% (6 species) in the enzyme-free group and 63.96% (7 species) in the enzyme additive group.

Development and Evaluation of Protected Fat in Wheat Straw Based Total Mixed Ration

  • Sirohi, S.K.;Malik, Raman;Walli, T.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1405-1408
    • /
    • 2001
  • Ca salt of soybean oil (PSO) and that of mustard oil plus mahua oil (PMOMO) (50:50) were prepared using double decomposition method, and further tested for their fatty acid composition and degree of saponification. Furthermore, the different levels of protected fat of PSO and PMOMO were evaluated in wheat straw based total mixed ration (TMR) in vitro. Results indicated that capric, lauric, myristic, palmitic, steric, oleic, linoleic, leinolenic acids were traces, traces, traces, 10.00, 2.00, 25.00, 58.50, 5.0% in PSO while the corresponding values in PMOMO were 1.08, 0.28, 0.45, 16.9, 12.95, 44.38, 17.46 and 6.50%, respectively. The degree of saponification of both protected fat supplements was more than 80%. Six treatment combinations were tested I.e., blank without feed and fat supplement (T1); control diet with out fat supplement (T2); control diet plus bypass fat supplement (PSO) so that diet contain 5% fat (T3); control diet plus bypass fat supplement (PSO) so that diet contain 7.5% fat (T4); two more diets viz. T5 and T6 were formulated using bypass fat supplement from PMOMO containing 5 and 7.5% fat respectively. TMR was prepared using 50% concentrate mixture and 50% wheat straw. Result indicated that TVFA, $NH_3-N$,TCA-N, total-N and total gas production were increased in treatment diets at 7.5% level of supplementation, however, fermentation pattern remain similar at 5.0% level of supplementation with respect to control diet. Nevertheless, IVDMD and IVOMD values remained unchanged, rather non-significant at both fat levels and with the both fat sources. On the basis of results it was concluded that Ca-salt of Soybean oil or Mustard plus Mahua oil did not show any negative effect either on digestibility or on microbial protein synthesis in rumen, hence the dietary fat upto 7.5% level in total mixed ration based on wheat straw, could be safely used without any adverse effect on rumen fermentation.