• 제목/요약/키워드: fermentation control

검색결과 1,803건 처리시간 0.031초

Bioconversion of Flavones During Fermentation in Milk Containing Scutellaria baicalensis Extract by Lactobacillus brevis

  • Xu, Chen;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권10호
    • /
    • pp.1422-1427
    • /
    • 2013
  • Scutellaria baicalensis (SB), a traditional herb with high pharmacological value, contains more than 10% flavone by weight. To improve the biological activity of flavones in SB, we aimed to enhance the bioconversion of baicalin (BG) to baicalein (B) and wogonoside (WG) to wogonin (W) in SB during fermentation using beta-glucuronidase produced from Lactobacillus brevis RO1. After activation, L. brevis RO1 was cultured in milk containing SB root extract with various carbon or nitrogen sources at $37^{\circ}C$ for 72 h. During fermentation, the growth patterns of L. brevis RO1 and changes in the flavone content were assessed using thin-layer chromatography and high-performance liquid chromatography. After 72 h of fermentation, the concentrations of B and W in the control group increased by only 0.15 and 0.12 mM, respectively, whereas they increased by 0.57 and 0.24 mM in the fish peptone group. The production of B and W was enhanced by the addition of 0.4% fish peptone, which not only improved the growth of L. brevis RO1 (p < 0.001) but also enhanced the bioconversion of flavones. In conclusion, the bioconversion of flavones in SB may provide a potential application for the enhancement of the functional components in SB.

Immobilized Biocatalysts를 이용한 환경성 폐기물질 억제에 관한 연구 (제3보) 알코올 발효를 위한 Immobilized Biocatalysts 제조 (Studies on the Control of Environmental Wastes by Means of Immobilized Biocatalysts (III) Preparation of Immobilized Biocatalyst to Ethanol Fermentation)

  • 김성기
    • 한국환경보건학회지
    • /
    • 제17권1호
    • /
    • pp.120-128
    • /
    • 1991
  • Saccharomyces cerevisiae was immobilized by incubating iron oxides with calcium alginate, and by polyacrylamide entrapment to use repeatedly for the conversion of glucose to ethanol. Magnetic and non-magnetic immobilized yeast and polyacrylamide immobilized yeast were compared with the native yeast a batch-fermentation of ethanol from glucose. Three kinds of immobilized yeast tended almost identically, having ethanol productivity as well as the final yield about the same to what was found for the native yeast. The long-term operational stability of three kinds of immobilized yeast were significant difference according as immobilized yeast activation or non-activation before ethanol fermentation. In the non-activation they lost their activity of fermentation rapidly in the beginning stage an slower at a later stage. On the other hand, in the activation with nutrient media, their activities were increased to some extent and stable in the later stage. The cell count of three kinds of immobilized yeast after activiation by incubating nutrient media, increased by a factor of about 45 to 48, whereas the fermenting capacity increased by a factor of 174 to 178. In the prearation of immobilized biocatalysts, magnetic matter does not seem to have any adverse affect on the properties of the microorganism. The immobilized biocatalysts by utilizing magnetic matter have some advantages, especially in application of viscous media or insoluble particle-containing media, for this work was linked with microbial utilization of environmental wastes and elimination of envirnmental pollutant.

  • PDF

발효액종이 빵의 품질에 미치는 영향 (Effects of Fermented Liquid Dough on Bread Quality)

  • 정윤경;장대훈
    • 한국지역사회생활과학회지
    • /
    • 제26권1호
    • /
    • pp.127-133
    • /
    • 2015
  • This study identifies the factors improving bread quality by using fermented liquid dough. Fermented liquid dough, the main part of bread dough, contains yeasts that are prepared in order to enhance the fermentation rate. This study investigates the fermentation rate after mixing dough, the pH of dough, loaf volume, water activity, hardness, and sensory properties of loaf bread samples with different amounts of fermented liquid dough. The fermentation rate was slightly higher in the bread samples, the control dough and 10% fermented liquid dough, than in samples with more than 20% dough. The pH values of dough decreased with an increase in the content of fermented liquid dough. The loaf volume of bread with 10% fermented liquid dough was the highest. The water activity of loaf bread increased with an increase in amount of fermented liquid dough. For the sensory evaluation of loaf bread, adding 10% fermented liquid dough improved the loaf volume and evenness of baking. These results suggest that 10% fermented liquid dough increased the fermentation rate and bread quality. Further research is required to enhance internal quality characteristics of loaf bread, including taste and flavor.

Studies on Lao-Chao Culture Filtrate for a Flavoring Agent in a Yogurt-Like Product

  • Liu, Yi-Chung;Chen, Ming-Ju;Lin, Chin-Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권4호
    • /
    • pp.602-609
    • /
    • 2002
  • Lao-chao is a traditional Chinese fermented rice product with a sweet and fruity flavor, containing high levels of glucose, a little alcohol and milk-clotting characteristics. In order to optimize commercial production of lao-chao, Rhizopus javanicus and Saccharomyces cerevisiae were selected as the mold and yeast starter, respectively. A commercial mixed starter (chiu-yao) was used as control. Fermentation of the experimental combination revealed a sharp drop in pH (to 4.5) on the fourth day, remaining constant thereafter. Content of reducing sugars gradually decreased throughout the entire fermentation period. Of the free amino acids, higher quantities of alanine, leucine, proline, glutamic acid, glutamine and $NH_3$ were noted. For sugars, glucose revealed the highest concentration, while organic acid levels, including those for oxalic, lactic, citric and pyroglutamic acid, increased throughout the fermentation period. Twenty-one compounds were identified by gas chromatography from aroma concentrates of the lao-chao culture filtrate, prepared using the headspace method. For the flavor components, higher quantities of ethanol, fusel oil and ester were determined in both culture filtrates. In regard to the evaluation of yogurt-like product, there were significant differences in alcoholic smell, texture and curd firmness.

열처리한 하수슬러지 메탄발효의 동력학적 해석 (Kinetic Evaluation of Methane Fermentation of Thermally Disintegrated Wastewater Sludge)

  • 박기영;이재우;정태학
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.927-933
    • /
    • 2007
  • Waste activated sludge (WAS) was thermally pretreated to enhance hydrolysis and ultimately methane yield. Batch and semi-continuous anaerobic digestion were conducted to evaluate the performance of methane fermentation of the hydrolyzed sludge and to investigate the kinetics of sludge fermentation. Thermal pretreatment remarkably enhanced digestion performances particularly the methane fermentation with three times more methane production than before the pretreatment. Gas production and kinetic parameters in the semi-continuous anaerobic digestion were estimated using Chen Hashimoto model. The model simulation fitted well the experimental results and the model was shown to be suitable for evaluating the effects of disintegration of WAS in anaerobic digestion. Three parameters ($B_o$, K, and ${\mu}_m$) determined by model simulation were $0.0807L-CH_4/g-VS$, 0.453 and $0.154d^{-1}$ for control sludge, and $0.253L-CH_4/g-VS$, 0.835 and $0.218d^{-1}$ for thermally pretreated sludge, respectively.

Development of Multilayer Perceptron Model for the Prediction of Alcohol Concentration of Makgeolli

  • Kim, JoonYong;Rho, Shin-Joung;Cho, Yun Sung;Cho, EunSun
    • Journal of Biosystems Engineering
    • /
    • 제43권3호
    • /
    • pp.229-236
    • /
    • 2018
  • Purpose: Makgeolli is a traditional alcoholic beverage made from rice with a fermentation starter called "nuruk." The concentration of alcohol in makgeolli depends on the temperature of the fermentation tank. It is important to monitor the alcohol concentration to manage the makgeolli production process. Methods: Data were collected from 84 makgeolli fermentation tanks over a year period. Independent variables included the temperatures of the tanks and the room where the tanks were located, as well as the quantity, acidity, and water concentration of the source. Software for the multilayer perceptron model (MLP) was written in Python using the Scikit-learn library. Results: Many models were created for which the optimization converged within 100 iterations, and their coefficients of determination $R^2$ were considerably high. The coefficient of determination $R^2$ of the best model with the training set and the test set were 0.94 and 0.93, respectively. The fact that the difference between them was very small indicated that the model was not overfitted. The maximum and minimum error was approximately 2% and the total MSE was 0.078%. Conclusions: The MLP model could help predict the alcohol concentration and to control the production process of makgeolli. In future research, the optimization of the production process will be studied based on the model.

Effect of Glycine on the Growth of Leuconostoc mesenteroides and Lactobacillus plantarum in Kimchi Fermentation

  • Jang, Ki-Hyo;Han, Woo-Cheul;Ji, Seol-Hee;Kang, Soon-Ah;Shah, Nagendra P.
    • Food Science and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.1180-1185
    • /
    • 2009
  • This study was aimed to investigate the effect of glycine supplementation on the growth of Leuconostoc mesenteroides and Lactobacillus plantarum during kimchi fermentation. As preliminary experiment, the effect of supplementation of glycine (0-2.0%, w/v) to MRS medium on the growth of Leuc. mesenteroides and L. plantarum was evaluated. At 2.0% glycine in the MRS medium, cell growth rate was inhibited by 79% for L. plantarum and 27% for Leuc. mesenteroides. Subsequently, different concentrations of glycine (0, 0.5, and 2.0%, w/v) were applied for kimchi fermentation for 21 days, at $5^{\circ}C$. At day 14, the pH and titratable acidity (TA) of kimchi supplemented with 2.0% glycine were 4.83 and 0.38%, respectively, whilst the control kimchi had a pH of 4.49 and TA of 0.44%, respectively. The ratio of Leuconostoc/ Lactobacillus in kimchi increased as the concentration of glycine increased. The results show that the presence of glycine affected the growth of the 2 lactic acid bacteria, particularly of L. plantarum.

소립검정콩 청국장의 화학성분 변화 (Changes in Chemical Components of Chungkugiang Prepared with Small Black Bean)

  • 손미예;권선화;성찬기;박석규;최상도
    • 생명과학회지
    • /
    • 제11권3호
    • /
    • pp.284-290
    • /
    • 2001
  • Changes in chemical components of small black bean chungkugjang(SBBC) added with kiwi and radish as foodstuffs to repress off-odor and enhance the quality of SBBC suring fermentation were investigated. Optimal pretreatment conditions of small black bean suitable to the fermentation of chungkugjang were 3 hrs of soaking time 1.5 times of ratio of water to black bean. 1.0 atm of high pressure, 20 min of heating time, cutting and crushing of heat-treated black bean. Moisture content of SBBC was remarkably lower than that of soybean chungkugjang(SBC) as control. Crude protein of SBBC was in the range 23.37∼25.71% and higher than that of SBC, Crude lipid of SBBC was lower than that of SBC. Crude lipid of SBBC added with kiwi and radish paste was decreased than that of SBBC without two foodstuffs. pH of SBBC were rapidly increased to 24 hrs of fermentation and gradually increased thereafter. Total acidity was shown to be reversely decreased as compared to pH tendency. Reducing sugar was increased to 24 hrs of fermentation and then decreased. In SBBC and SBC, potassium was the most abundant followed by phosphorus, magnesium and calcium.

  • PDF

염 내성 변이균주 Candida magnoliae M26에 의한 에리스리톨 발효특성 (Fermentation Characteristics of Salt-Tolerant Mutant, Candida magnoliae M26, for the Production of Erythritol)

  • 이강희;서진호;유연우
    • KSBB Journal
    • /
    • 제17권6호
    • /
    • pp.509-514
    • /
    • 2002
  • 발효조건의 최적화에 대한 연구결과 온도는 28$^{\circ}C$, 배지의 초기 pH는 7.0, 통기와 교반 조건은 1.0 vvm과 500 rpm에서 erythritol의 생산이 가장 우수하였다. 이러한 최적의 발효조건에서 250 g/L의 glucose와 5 g/L의 yeast extract가 포함된 발효배지에서 최대 erythritol 농도는 143.3 g/L이었으며, 이때의 수율은 57%이고 생산성은 0.70 g/L-h이었다. 발효 중에 pH를 일정하게 조절하는 경우에 erythritol의 수율 및 생산성은 향상되지 못하였다. 발효배지에 0.5 M의 NaCl 또는 KCl의 첨가에 의해서 염이 첨가되지 않은 배지에 비해 erythritol의 생산이 약간 증가를 하였다. 그러나 NaCl 또는 KCl의 첨가농도가 증가할 수록 erythritol의 생성은 감소하고, 반면에 glycerol의 생성이 증가하였다.

Cucurbitacin B Activates Bitter-Sensing Gustatory Receptor Neurons via Gustatory Receptor 33a in Drosophila melanogaster

  • Rimal, Suman;Sang, Jiun;Dhakal, Subash;Lee, Youngseok
    • Molecules and Cells
    • /
    • 제43권6호
    • /
    • pp.530-538
    • /
    • 2020
  • The Gustatory system enables animals to detect toxic bitter chemicals, which is critical for insects to survive food induced toxicity. Cucurbitacin is widely present in plants such as cucumber and gourds that acts as an anti-herbivore chemical and an insecticide. Cucurbitacin has a harmful effect on insect larvae as well. Although various beneficial effects of cucurbitacin such as alleviating hyperglycemia have also been documented, it is not clear what kinds of molecular sensors are required to detect cucurbitacin in nature. Cucurbitacin B, a major bitter component of bitter melon, was applied to induce action potentials from sensilla of a mouth part of the fly, labellum. Here we identify that only Gr33a is required for activating bitter-sensing gustatory receptor neurons by cucurbitacin B among available 26 Grs, 23 Irs, 11 Trp mutants, and 26 Gr-RNAi lines. We further investigated the difference between control and Gr33a mutant by analyzing binary food choice assay. We also measured toxic effect of Cucurbitacin B over 0.01 mM range. Our findings uncover the molecular sensor of cucurbitacin B in Drosophila melanogaster. We propose that the discarded shell of Cucurbitaceae can be developed to make a new insecticide.