• 제목/요약/키워드: fermentation and bioethanol

검색결과 98건 처리시간 0.021초

Bioethanol Production from Sugarcane Molasses by Fed-Batch Fermentation Systems Using Instant Dry Yeast

  • Agustin Krisna Wardani;Cinthya Putri Utami;Mochamad Bagus Hermanto;Aji Sutrisno;Fenty Nurtyastuti
    • 한국미생물·생명공학회지
    • /
    • 제51권2호
    • /
    • pp.184-190
    • /
    • 2023
  • Bioethanol has recently attracted much attention as a sustainable and environmentally friendly alternative energy source. This study aimed to develop a potential process for bioethanol production by fed-batch fermentation using instant dry yeast. To obtain the highest cell growth, we studied the influence of the initial sugar concentrations and pH of sugarcane molasses in batch fermentation. The batch system employed three levels of sugar concentrations, viz. 10%, 15%, 20% (w/v), and two levels of pH, 5.0 and 5.5. The highest cell growth was achieved at 20% (w/v) and pH 5.5 of molasses. The fed-batch system was then performed using the best batch fermentation conditions, with a molasses concentration of 13% (w/v) which resulted in high ethanol concentration and fermentation efficiency of 15.96% and 89%, respectively.

식음료폐기물을 이용한 바이오에탄올 생산 (Production of Bioethanol by Using Beverage Waste)

  • 전형진;이병오;강경우;정준성;정봉우;최기욱
    • KSBB Journal
    • /
    • 제26권5호
    • /
    • pp.417-421
    • /
    • 2011
  • Because beverage waste contains a lot of sugar, it can be used as a valuable resource for energy. But beverage waste is discharged through the water treatment. To prevent the waste of the energy resource, we produced bioethanol by using beverage waste in this study. In order to produce bioethanol, we added distillers stillage and NaOH for fermentation condition (nutrients and pH adjustment). As a results, ethanol concentration was 5.92 vol%. In contrast, ethanol concentration of blank (not added nutrients) was low and fermentation rate was very slow. Because components of the distillers stillage help the yeast growth, fermentation yield and rate was improved. Finally, we operated distillation and dehydration process by using fermented mash and produced fuel bioethanol (more than 99.5 wt%). We think that this results may provide useful information with application of commercial ethanol production using beverage waste.

보리의 도정을 통한 바이오에탄올 생산성 향상 연구 (Improvement of the Bioethanol Productivity from Debranned Barley)

  • 전형진;김율;김신;정준성
    • 한국수소및신에너지학회논문집
    • /
    • 제29권6호
    • /
    • pp.648-653
    • /
    • 2018
  • Bran of barley causes high viscosity in bioethanol production due to the large amount of ${\beta}$-glucans and fiber. High viscosity is the main cause of decreased productivity and decreased facility efficiency in ethanol production. In order to prevent high viscosity, this study investigated the possibility of bioethanol from barley by debranning. As a result, it was able to reduced the viscosity (22.8 cP to 17.5 cP). And the fermentation speed and yield were improved as the activity of the enzyme and activity of yeast was also increased was improved due to the removal of non-fermentable components. In conclusion, debranning was advantageous in two ways. Firstly, bran removal increased the starch content of the feedstock and decreased viscosity of mash, improving ethanol fermentation. Secondly, by-products produced by debranning can use valuable products. It was remarkable results to the feasibility of bioethanol production from debranned barley.

산 가수분해와 발효에 의한 해조류로부터 에탄올 생산 (Ethanol Production From Seaweeds by Acid-Hydolysis and Fermentation)

  • 나춘기;송명기;손창인
    • 신재생에너지
    • /
    • 제7권3호
    • /
    • pp.6-16
    • /
    • 2011
  • In order to study the utilization of seaweeds as an alternative renewable feedstock for bioethanol production, their properties of hydrolysis and fermentation were investigated. The seaweeds were well hydrolyzed with diluted sulfuric acid. The weight loss of seaweeds reached 75-90%, but only 12-51% of them was converted into reducing sugars after the acid-hydrolysis at $130^{\circ}C$ for 4-6h. The yield of reducing sugars increased with increasing the hydrolysis time up to 4h and then decreased thereafter. In contrast, the ethanol yield from the hydrolysates increased with hydrolysis time except for green seaweeds maximizing at 4h. Optimal fermentation time by Saccharomyces cerevisiae (ATCC 24858) varied with seaweeds; 48h for green seaweeds, 96h for brown and red seaweeds. The ethanol yield from the hydrolysate reached 138${\pm}$37mg/g-dry for green seaweeds, 258${\pm}$29mg/g-dry for brown seaweeds, and 343${\pm}$53mg/g-dry for red seaweeds, which correspond to approximately 1.5-4.0 times more than the theoretical yield from total reducing sugars in the hydrolysates. The results obtained indicate clearly that the non-reducing sugars or oligosaccharides dissolved in the hydrolysate played an important role in producing bioethanol. Considering the productivity and production cost of each seaweed, brown seaweeds such as Laminaria japonica and Undaria pinnatifida seem to be a promissing feedstock for bioethanol production.

폐압축보드를 이용한 바이오에탄올 생산 (Bioethanol Production by using Wasted MDF)

  • 강양래;황진식;배기한;조훈호;이은정;조영손;남기두
    • KSBB Journal
    • /
    • 제31권1호
    • /
    • pp.73-78
    • /
    • 2016
  • The aim of this study attempted to verify the possibility of bioethanol production using wasted medium density fiberboard (wMDF). In order to produce bioethanol from wood cellulosic materials must be carried out the process of pretreatment, saccharification, fermentation and distillation. First, the wMDF was pretreated using sodium chlorite and pretreated wMDF was prepared to 8% slurry and then slurry was saccharified with the commercial enzyme (Cellic CTec3). The fermentable sugar and pH of saccharified substrate were about 5.5% glucose and 4.4, respectively. Herein we compared the results of ethanol yield according to the nutrients added or without addition to increase ethanol yield. Ethanol fermentation was finished in about 24 hours, but it was delayed in experimental group without nutrients. Ethanol content and fermentation ratio of the final fermented mash prepared by utilizing jar fermenter was 25.40 g/L and 86.64%, respectively. At this time, the maximum ethanol productivity was confirmed as 1.78 g/Lh (ethanol content 21.38 g/L, 12 h), and the overall ethanol productivity was 1.05 g/Lh (ethanol content 25.27 g/L, 24 h). Using fermented liquid we could produced bioethanol 95.37% by continuous distillator packed with copper element in laboratory scale. These results show that wMDF has a potential valuable for bioethanol production.

맥주 폐 효모액의 당화 및 에탄올 발효능 (Saccharification and Fermentation Capability of the Waste from Beer Fermentation Broth)

  • 강민경;김민아;유보완;박중곤
    • Korean Chemical Engineering Research
    • /
    • 제51권6호
    • /
    • pp.709-715
    • /
    • 2013
  • 맥주 폐 효모액(waste from beer fermentation broth, WBFB)은 바이오 에탄올 생산을 위한 우수하고 저렴한 원료이다. 본 연구에서는 바이오 에탄올 생산을 위해 WBFB의 당화능과 발효능을 확인하는 실험을 진행하였다. 당화능은 온도를 30, 40, 50, 60, $70^{\circ}C$로 다르게 하여 실험했는데 온도가 올라감에 따라 당화능은 증가하였고 4시간 후 $60^{\circ}C$$70^{\circ}C$에서 많은 양의 glucose가 생산되었다. WBFB와 chemically defined media (CDM) 혼합물에서는 어떠한 미생물의 첨가 없이도 발효가 되어 에탄올이 생산되었다. 동시당화발효능을 30, 40, 50, $60^{\circ}C$의 다양한 온도에서 실험해본 결과 $30^{\circ}C$에서 에탄올이 가장 많이 생산되었다. 또 이 실험은 WBFB, starch 용액 그리고 CDM을 이용하여 수행하였는데 WBFB에 있는 당화 효소와 효모가 어떠한 추가적 미생물 첨가 없이 당화와 발효를 가능케 하는 요인이었다.

Bioethanol Production Using Lignocellulosic Biomass-review Part 2. Saccharification and fermentation of biomass for generating ethanol

  • Sheikh, Mominul Islam;Kim, Chul-Hwan;Yesmin, Shabina;Lee, Ji-Yong;Kim, Gyeong-Chul;Ahn, Byeong-Il;Kim, Sung-Ho;Park, Hyeon-Jin
    • 펄프종이기술
    • /
    • 제42권5호
    • /
    • pp.15-23
    • /
    • 2010
  • Bio-ethanol is the most potential next generation automotive fuel for reducing both consumption of crude oil and environmental pollution from renewable resources such as wood, forest residuals, agricultural leftovers and urban wastes. Lignocellulosic based materials can be broken down into individual sugars. Therefore, saccharification is one of the important steps for producing sugars, such as 6-C glucose, galactose, mannose and 5-C xylose, mannose and rhamnose. These sugars can be further broken down and fermented into ethanol. The main objective of this research is to study the feasibility and optimize saccharification and fermentation process for the conversion of lignocellulosic biomass to low cost bioethanol.

고효율 바이오 에탄올 생산을 위한 최적 전처리 공정 탐색 및 동시당화발효 공정 연구 (Study on Optimizing, Pretreatment & Simultaneous Saccharification and Fermentation Process for High-efficiency Bioethanol)

  • 최기욱;한민희;김율
    • KSBB Journal
    • /
    • 제23권3호
    • /
    • pp.276-280
    • /
    • 2008
  • 동시당화발효 공정을 이용한 국내산 원료의 바이오 에탄올 생산성을 비교해 보았다. 먼저 바이오 에탄올 생산비를 절감하기 위해 에탄올 생산의 전처리 공정인 호화, 액화 공정의 최적조건을 탐색하였고 이를 바탕으로 각 원료별 에탄올 생산성을 알아보았다. 그 결과 각 원료별로 모두 다른 최적의 전처리 조건을 나타내었는데, 이는 원료에 따른 전분 입자의 구조 때문인 것으로 판단된다. 또한 에탄올 생산성에 있어서도 원료별로 많은 차이를 보였다. 옥수수의 경우 에탄올 전환 수율이 90.45%로 가장 높았고 발효속도 면에서는 절간고구마 가장 빠른 것으로 나타났다. 이는 대부분의 원료에서 전분함량이 높을수록 에탄올 생산량은 많았지만 발효 속도에는 크게 영향을 미치지 않는 것으로 보아 원료에 포함된 다른 조효소나 보조인자들이 영향을 미치는 것을 의미한다. 그러므로 고효율의 바이오 에탄올을 생성하기 위해서는 각 원료에 따른 특성 파악이 중요하며 발효에 영향을 미치는 요소들에 대하여 많은 연구가 필요할 것으로 판단된다.

회분식 반응기에서 음식물쓰레기를 이용한 바이오에탄올 생산 (Bioethanol production using batch reactor from foodwastes)

  • 이준철;김재형;박홍선;박대원
    • 대한환경공학회지
    • /
    • 제32권6호
    • /
    • pp.609-614
    • /
    • 2010
  • 유기성 폐기물인 음식물쓰레기를 이용하여 유용한 에너지원인 바이오에탄올을 생산하고자 하였으며, 에탄올 생산 균주는 Saccharomyces cerevisiae를 이용하였다. 음식물쓰레기의 당화를 위하여 carbohydrase와 glucoamylase 효소를 이용한 결과 carbohydrase가 glucoamylase보다 당화효율이 우수하였으며, carbohydrase 이용시 건조 음식물쓰레기 기준 glucose 생산량 0.63 g/g-TS을 얻을 수 있었다. 에탄올 생산은 동시당화발효에서 0.44 g/$L{\cdot}hr$, 분리당화발효가 0.27 g/$L{\cdot}hr$이었다.

라이밀 자체 효소를 이용한 바이오에탄올 생산 (Bioethanol Production using Endogenous Triticale Enzyme)

  • 최기욱;김율;문세권
    • KSBB Journal
    • /
    • 제23권6호
    • /
    • pp.504-508
    • /
    • 2008
  • 국내산 라이밀을 이용한 바이오에탄올 생산을 위해 저온 전처리 공정을 도입하여 에탄올 생산성을 비교하였다. 라이밀의 경우 원료 특성상 증자 공정에서 점도 문제가 발생하는데, 이를 해결하기 위해 최적 전처리 조건을 탐색하였으며 이에 따른 에탄올 생산성을 비교하였다. 저온 조건과 점도 저하 효소를 사용함으로서 점도에 따른 발효 저해 현상 해결하였고 전처리 공정에 소요되는 전처리 공정비를 절감할 수 있었다. 또한 pH 조절(pH 4.5) 후 살균 처리 없이 바로 발효가 가능함을 확인할 수 있었다. 발효 초기 총당 함량은 $48{\pm}2.0\;g/L$이었으며, 발효 72시간 이후 에탄올 생성 농도는 $67.4{\pm}1.4\;g/L$, 톤당 에탄올 생산량은 410.9 L (dry base)로 효소 무첨가구보다 에탄올 농도와 톤당 수득량이 각각 15%, 20% 이상 증가하였다. 이와 같은 결과는 기존의 에탄올생산 공정과 비교하여 전처리 공정에 소요되는 시간을 30-50% 이상 줄일 수 있으며, 저온 공정에 따른 에너지 사용 절감 및 초기 시설 투자비를 줄일 수 있어 바이오에탄올 생산을 위한 대체 원료로 충분한 가능성을 보여 주었다.