DOI QR코드

DOI QR Code

Ethanol Production From Seaweeds by Acid-Hydolysis and Fermentation

산 가수분해와 발효에 의한 해조류로부터 에탄올 생산

  • 나춘기 (목포대학교 환경공학과) ;
  • 송명기 (목포대학교 환경공학과) ;
  • 손창인 (한국환경공단 에너지사업단 연구원)
  • Received : 2011.07.11
  • Accepted : 2011.08.10
  • Published : 2011.09.25

Abstract

In order to study the utilization of seaweeds as an alternative renewable feedstock for bioethanol production, their properties of hydrolysis and fermentation were investigated. The seaweeds were well hydrolyzed with diluted sulfuric acid. The weight loss of seaweeds reached 75-90%, but only 12-51% of them was converted into reducing sugars after the acid-hydrolysis at $130^{\circ}C$ for 4-6h. The yield of reducing sugars increased with increasing the hydrolysis time up to 4h and then decreased thereafter. In contrast, the ethanol yield from the hydrolysates increased with hydrolysis time except for green seaweeds maximizing at 4h. Optimal fermentation time by Saccharomyces cerevisiae (ATCC 24858) varied with seaweeds; 48h for green seaweeds, 96h for brown and red seaweeds. The ethanol yield from the hydrolysate reached 138${\pm}$37mg/g-dry for green seaweeds, 258${\pm}$29mg/g-dry for brown seaweeds, and 343${\pm}$53mg/g-dry for red seaweeds, which correspond to approximately 1.5-4.0 times more than the theoretical yield from total reducing sugars in the hydrolysates. The results obtained indicate clearly that the non-reducing sugars or oligosaccharides dissolved in the hydrolysate played an important role in producing bioethanol. Considering the productivity and production cost of each seaweed, brown seaweeds such as Laminaria japonica and Undaria pinnatifida seem to be a promissing feedstock for bioethanol production.

Keywords

References

  1. M. Balata, H. Balata, C. Oz, 2008, "Progress in bioethanol processing", Prog. Energy and Combustion Sci., Vol. 34, pp. 551-573. https://doi.org/10.1016/j.pecs.2007.11.001
  2. P. Nigam, A. Singh, 2011, "Production of liquid biofuels from renewable resources", Prog. Energy Combust. Sci., Vol. 37, pp. 52-58. https://doi.org/10.1016/j.pecs.2010.01.003
  3. R.E.H. Sims, W. Mabee, J.N. Saddler, M. Taylor, 2011, "An overview of second generation biofuel technologies", Bioresource Technol., Vol. 101, pp. 1570-1580.
  4. J.P. Delgenes, R. Moletta, J.M. Navarro, 1990, "Acidhydrolysis of wheat straw and process considerations for ethanol fermentation by Pichia Stipitis Y7124", Process Biochemistry, Vol. 25, pp. 132-135.
  5. B.K. Ahring, K. Jensen, P. Nielsen, A.B. Bjerre, A.S. Schmidt, 1996, "Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria", Bioresource Technology, Vol. 58, pp. 107-113. https://doi.org/10.1016/S0960-8524(96)00090-9
  6. J.N. Nigam, 2001, "Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis", Journal of Biotechnology, Vol. 87, pp. 17-27. https://doi.org/10.1016/S0168-1656(00)00385-0
  7. B.C. Saha, L.B. Iten, M.A. Cotta, Y.V. Wu, 2005, "Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol", Process Biochemistry, Vol. 40, pp. 3693-3700. https://doi.org/10.1016/j.procbio.2005.04.006
  8. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, 2008, "Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances", Plant J., Vol. 54, pp. 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  9. X. Zhang, Q. Hu, M. Sommerfeld, E. Puruhito, Y. Chen, 2010, "Harvesting algal biomass for biofuels using ultrafiltration membranes", Bioresource Technol., Vol. 101, pp. 5297-5304. https://doi.org/10.1016/j.biortech.2010.02.007
  10. A. Singh, P.S. Nigam, J.D. Murphy, 2011, "Renewable fuels from algae: an answer to debatable land based fuels", Bioresource Technol., Vol. 102, pp. 10-16. https://doi.org/10.1016/j.biortech.2010.06.032
  11. M. Aresta, A. Dibenedetto, G. Barbeiro, 2005, "Utilization of macro-algae for enhanced $CO_2$ fixation and biofuels production: development of a computing software for an LCA study", Fuel. Process. Technol., Vol. 86, pp. 1679-1693. https://doi.org/10.1016/j.fuproc.2005.01.016
  12. C.S. Goh, K.T. Lee, 2010, "Conceptual macroalgaebased thirdgeneration bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development", Renew. Sustain. Energy Rev., Vol. 14, pp. 842-848. https://doi.org/10.1016/j.rser.2009.10.001
  13. G. Guerriero, J. Fugelstad, V. Bulone, 2010, "What do we really know about cellulose biosynthesis in higher plant?", J. Integrative Plant Biology, Vol. 52, pp. 161-175. https://doi.org/10.1111/j.1744-7909.2010.00935.x
  14. K. Okuda, K. Oka, A. Onda, K. Kajiyoshi, M. Hiraoka, K. Yanagisawa, 2008, "Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis", J. Chem. Technol. Biot., Vol. 83, pp. 836-841. https://doi.org/10.1002/jctb.1877
  15. S.J. Horn, I.M. Aasen, K. Ostgaard, 2000, "Production of ethanol from mannitol by Zymobacter palmae", J. Ind. Microbiol. Biotechnol., Vol. 24, pp. 51-57. https://doi.org/10.1038/sj.jim.2900771
  16. 이성목, 이재화, 2010, "산 농도 및 염 농도가 다시마 에탄올 발효에 미치는 영향", Appl. Chem. Eng., Vol. 21, pp. 154-161.
  17. X. Wang, X. Liu, G. Wang, 2011, "Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation", J. Integrative Plant Biology, Vol. 53, pp. 246-252. https://doi.org/10.1111/j.1744-7909.2010.01024.x
  18. G.L. Miller, 1959, "Use of dinitrosalicylic acid reagent for the determination of reducing sugars", Anal. Chem., Vol. 31, pp. 426-428. https://doi.org/10.1021/ac60147a030
  19. M. Chen, J. Zhao, L. Xia, 2009, "Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility", Biomass and Bioenergy, Vol. 33, pp. 1381-1385. https://doi.org/10.1016/j.biombioe.2009.05.025
  20. Van Groenestijn J., Hazewinkel O., Bakker R., 2006, "Pretreatment of lignocellulose with biological acid recycling (Biosulfurol process)", Zuckerindustrie, Vol. 131, pp. 639-641.
  21. L. Dawson, R. Boopathy, 2008, "Cellulosic ethanol production from sugarcane bagasse without enzymatic saccharification", Bio. Resour. Vol. 3, pp. 452-460.
  22. S. Abedinifar, K. Karimi, M. Khanahmadi, M.J. Taherzadeh, 2009, "Ethanol production by mucor indicus and rhizopus oryzae from rice straw by separate hydrolysis and fermentation", Biomass and Bioenergy, Vol. 33, pp. 828-833. https://doi.org/10.1016/j.biombioe.2009.01.003
  23. S.C. Rabelo, R.M. Filho, A.C. Costa, 2009, "Lime pretreatment of sugarcane bagasse for ethanol production", Appl. Biochem. Biotechnol., Vol. 153, pp. 139-150. https://doi.org/10.1007/s12010-008-8433-7
  24. N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y.L.M. Holtzapple, M. Ladisch, 2005, "Features of promising technologies for pretreatment of lignocellulosic biomass", Bioresource Technol., Vol. 96, pp. 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  25. E. Percival, 1979, "The polysaccharides of green, red and brown seaweeds: Their basic structure, biosynthesis and functions", British Phycological Journal, Vol. 14, pp. 103-117. https://doi.org/10.1080/00071617900650121
  26. J. Arne, 1993, "Present and future needs for algae and algal products", Hydrobiologia, Vol. 260, pp. 15-23. https://doi.org/10.1007/BF00048998
  27. 류정곤, 조정희, 김대영, 2009, "해조류 바이오산업화를 위한 전략 및 정책방향", 한국해양수산개발원, 정책연구자료.
  28. L. Ge, P. Wang, H. Mou, 2011, "Study on saccharification techniques of seaweed wastes for the transformation of ethanol", Renewable Energy, Vol. 36, pp. 84-89. https://doi.org/10.1016/j.renene.2010.06.001
  29. R. Harun, M.K. Danquah, 2011, "Influence of acid pre-treatment on microalgal biomass for bioethanol production", Process Biochemistry, Vol. 46, pp. 304- 309. https://doi.org/10.1016/j.procbio.2010.08.027
  30. P. Polycarpou, 2009, "Bioethanol production from Asphodelus aestivus", Renewable Energy, Vol. 34, pp. 2525-2527. https://doi.org/10.1016/j.renene.2009.04.015
  31. K. Ohgren, R. Bura, G. Lesnicki, J. Saddler, G. Zacchi, 2007, "A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover", Process Biochemistry, Vol. 42, pp. 834-839. https://doi.org/10.1016/j.procbio.2007.02.003
  32. S. Kim, B.E. Dale, 2004, "Global potential bioethanol production from wasted crops and crop residues", Biomass and Bioenergy, Vol. 26, pp. 361-375. https://doi.org/10.1016/j.biombioe.2003.08.002
  33. 김경수, 2007, "해조류를 이용한 바이오에너지 생산 타당성 연구", GOVP1200819997, 산업자원부.

Cited by

  1. Effects of Dietary of By Products for Seaweed (Eucheuma spinosum) Ethanol Production process on growth performance, Carcass Characteristics and Immune Activity of Broiler Chicken vol.40, pp.2, 2013, https://doi.org/10.5536/KJPS.2013.40.2.105
  2. Microwave-Assisted Acid-Hydolysis of Laminaria Japonica and its Ethanol Productivity: Comparison with Conventional Heating vol.9, pp.2, 2013, https://doi.org/10.7849/ksnre.2013.9.2.005
  3. Determining Optimum Condition of Acid Hydrolysis Technique for Food Waste Reduction vol.50, pp.6, 2017, https://doi.org/10.7745/kjssf.2017.50.6.606