• Title/Summary/Keyword: feedforward control method

Search Result 265, Processing Time 0.026 seconds

Adaptive Control Method for a Feedforward Amplifier

  • Kang, Sang-Gee;Yi, Hui-Min;Hong, Sung-Yong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.108-112
    • /
    • 2003
  • A feedforward amplifier, which is composed of several components, is an open loop system. Therefore, feedforward amplifiers are apt to deteriorate the performance according to the environmental changes even though the cancellation performance and the linearization bandwidth of feedforward systems are superior to other linearization methods. A control method is needed for maintaining the original performance of feedforward amplifiers or to keep the performance within a little error bounds. In this paper, an adaptive control method, which has a good convergence characteristic and is easy to implement, is suggested. The characteristics of the suggested control method compare with the characteristics of other control methods and the simulation results are presented.

  • PDF

Improvement of Transient Performance of Synchronous Generator using Feedforward Controller (피드포워드 제어기를 사용한 동기발전기의 과도특성 개선)

  • An, Young-Joo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • A brush-less type synchronous generator driven by an internal-combustion engine is used for emergency electric source. These types of generators have to maintain a certain range of output voltage even under the sudden load change conditions such as full load application and removal. This paper describes a method for suppressing the output voltage of a synchronous generator that operates excessively when the load fluctuates. The method used in this paper is a feedforward control method in which the main voltage control consists of a feedback loop using a typical PID controller and the load current is detected as a disturbance element and compensated directly. A feedforward system is constructed in which the load current is regarded as disturbance, and the appropriate feedforward controller configuration and parameters are found through simulation. Finally, it can be seen through the experiment that the feedforward control is performed properly. It can be seen that the generator terminal voltage is recovered to the steady state in a short period of time as compared with the existing PID control method even when the entire load of the generator is changed.

Adaptive Control Method for a Feedforward Amplifier (피드포워드 증폭기의 적응형 제어 방법)

  • Kang, Sang-Gee;Yi, Hui-Min;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2004
  • A feedforward amplifier, which is composed of several components, is an open loop system. Therefore, feedforward amplifiers are apt to deteriorate its performance according to the environmental changes even though the cancellation performance and the linearization bandwidth of feedforward systems are superior to other linearization methods. A control method is needed for maintaining the original performance of feedforward amplifiers or to keep the desired performance within a little error bounds. In this paper, an adaptive control method using the steepest descent algorithm, which has a good convergence characteristic and is easy to implement, is suggested. The characteristics of the suggested control method compare with the characteristics of other control methods and the simulation results are presented.

Voltage Feedforward Control with Time-Delay Compensation for Grid-Connected Converters

  • Yang, Shude;Tong, Xiangqian
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1833-1842
    • /
    • 2016
  • In grid-connected converter control, grid voltage feedforward is usually introduced to suppress the influence of grid voltage distortion on the converter's grid-side AC current. However, owing to the time-delay in control systems, the suppression effect of the grid voltage distortion is seriously affected. In this paper, the positive effects of the grid voltage feedforward control are analyzed in detail, and the time-delay caused by the low-pass filter (LPF) in the voltage filtering circuits and digital control are summarized. In order to reduce the time-delay effect on the performance of the feedforward control, a voltage feedforward control strategy with time-delay compensation is proposed, in which, a leading correction of the feedforward voltage is used. The optimal leading step used in this strategy is derived from analyzing the phase-frequency characteristics of a LPF and the implementation of digital control. By using the optimal leading step, the delay in the feedforward path can be further counteracted so that the performance of the feedforward control in terms of suppressing the influence of grid voltage distortion on the converter output current can be improved. The validity of the proposed method is verified through simulation and experiment results.

A Simultaneous Experimental Disturbances Identification of Gyro Stabilized 2-Axes Gimbal System for Disturbance Feedforward Compensation Control (2-축 자이로 안정화 김발 시스템의 외란보상 앞먹임 제어를 위한 실험적 2-축 외란 동시 식별)

  • Yeo, Sung Min;Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.508-519
    • /
    • 2018
  • This paper concerns on stabilization control of a gyro-stabilized 2-axes gimbal system which is mounted on a moving vehicles such as automobiles, armored vehicles, ships, flying vehicles, etc. A target image acquisition system is attached on the inner gimbal, and the gimbal systems are required to retain high stabilization accuracy in the absolute coordinate in order to provide fine target image while vehicle is moving. The stabilization control performance is hardly depended upon disturbance rejection ability of control, and disturbance feedforward compensation is effective because feedforward compensation reduce the amount of disturbance before the disturbance disturbs the systems. This paper suggests an experimental method which can estimate system parameters and disturbance torques by using 3-axes accelerometer mounted on the inner gimbal. Furthermore, a simple disturbance identification method which can be applied to any slanted base conditions has been suggested to identify mass unbalance vector and friction torques of each gimbal simultaneously. By using the estimated parameters, a feedforward compensation has been applied to the gyro-stabilized 2-axes gimbal system. The experimental results showed that the feedforward compensation based on the identification method suggested is effective to improve stabilization performances.

Automatic adjustment of feedforward signal in boiler controllers of thermal power plants

  • Egashira, Katsuya;Nakamura, Masatoshi;Eki, Yurio;Nomura, Masahide
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.83-86
    • /
    • 1995
  • This paper proposes an auto-tuning method of feedforward signal in boiler control of thermal power plants by using the neural network. The neural network produces an optimal feedforward signal by tuning the weights of the network. The weights are adapted effectively by using the teaching signal of PI control output. The proposed method was evaluated based on a detailed simulator which expressed non-linear characteristics of the 600 MW actual thermal power plant at load chaning operations, showed effectiveness in the learning of the weights of the neural network, and gave an accurate control performance in the temperature control of the system. Through the evaluation, the proposed method was proved to be effectively applicable to the actual thermal plants as the automatic adjustment tool.

  • PDF

Design Method of a Parallel Feedforward Compensator for Passivation of Linear Systems (선형 시스템 수동화를 위한 병렬 앞먹임 보상기 설계방법 연구)

  • 손영익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.590-596
    • /
    • 2004
  • A passivity-based dynamic output feedback controller design is considered for a finite collection of non-square linear systems. Design of a single controller for a set of plants i.e. simultaneous stabilization is an important issue in the area of robust control design. We first determine a squaring gain matrix and an additional dynamics that is connected to the systems in a feedforward way, then a static passivating control law is designed. Consequently, the actual feedback controller will be the static control law combined with the feedforward dynamics. A necessary and sufficient condition for the existence of the parallel feedforward compensator is given by the static output feedback formulation. In contrast to the previous result [1], a technical condition for constructing the parallel feedforward compensator is removed by proposing a new type of the parallel compensator.

Decoupling Control of Three-tank Liquid Level Systems Based on Feedforward Compensation (Feedforward 보상에 근거한 3개의 탱크 액체 레벨 시스템의 통제 분리)

  • Shi, Xue-Wen
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.36-41
    • /
    • 2008
  • By considering decoupling between loops as a kind of measurable disturbance, a steady-state decoupling method based on feedforward compensation is proposed for a three-tank liquid level system often encountered in practical process control. In addition, the three-tank liquid level system's dynamic model with structure of two-input and two-output is presented according to its working principle. Finally simulation experiments given in C++Builder language demonstrate the effectiveness of the proposed method.

The Power Analysis and Its Control of Two-phase Orthogonal Power Supply for the Continuous Casting

  • Ma, Fujun;Luo, An;Xiong, Qiaopo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.971-982
    • /
    • 2015
  • In order to improve the quality of the billet continuous casting, a two-phase orthogonal power supply (TPOPS) for electromagnetic stirrer is researched, which is composed of three-phase PWM rectifier and three-leg inverter. According to the power analysis of system, the ripple of dc-link voltage is analyzed and its analytical expression is derived. In order to improve the performance of electromagnetic stirring, an integrated control method with feedforward control is proposed for PWM rectifier to suppress the fluctuations of dc-link voltage and provide a stable dc source for inverter. According to the simplified equivalent model, a composite current control method is proposed for inverter. This proposed method can combine the merits of feedforward control with feedback control to effectively improve the dynamic output performance of TPOPS. Finally, a 300kVA prototype of TPOPS is developed, and the results have verified the analysis and control method.

Swing-up Control of an Inverted Pendulum Subject to Input/Output Constraints (입·출력 제약을 갖는 도립진자의 스윙업 제어)

  • Meta, Tum;Gyeong, Gi-Young;Park, Jae-Heon;Lee, Young-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.835-841
    • /
    • 2014
  • In this paper we propose a swing-up strategy for a single inverted pendulum. The proposed method has a feature whereby can handle the input and output constraint of a pendulum in a systematic way. For the swing-up of a pendulum, we adopt a 2-DOF control structure that combines the feedforward and feedback control. In order to generate the swing-up feedforward trajectories that satisfy the input and output constraint, we formulate the problem of generating feedforward trajectories as a nonlinear optimal control problem subject to constraints. We illustrate that the proposed method is more flexible than the existing method and provides great freedom in choosing the actuator of the inverted pendulum. Through an experiment, we show that the proposed method can swing a pendulum upward effectively while satisfying all the imposed constraints.