• Title/Summary/Keyword: feedback-linearization

Search Result 341, Processing Time 0.031 seconds

Trajectory Tracking Control of Mobile Robot using Multi-input T-S Fuzzy Feedback Linearization (다중 입력 T-S 퍼지 궤환 선형화 기법을 이용한 이동로봇의 궤도 추적 제어)

  • Hwang, Keun-Woo;Kim, Hyeon-Woo;Park, Seung-Kyu;Kwak, Gun-Pyong;Ahn, Ho-Kyun;Yoon, Tae-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1447-1456
    • /
    • 2011
  • In this paper, we propose a T-S fuzzy feedback linearization method for controlling a non-linear system with multi-input, and the method is applied for trajectory tracking control of wheeled mobile robot. First, an error dynamic equation of wheeled mobile robot is represented by a T-S fuzzy model, and then the T-S fuzzy model is transformed to a linear control system through the nonlinear fuzzy coordinate change and the nonlinear state feedback input. Simulation results showed that the trajectory tracking controller by using the proposed multi-input feedback linearization method gives better performance than the trajectory tracking controller by using the PDC(Parallel Distributed Compensation) method for controlling the T-S Fuzzy system.

An implementation of a controller for a double inverted pendulum with a single actuator (단일 구동부를 갖는 2축 도립 진자를 위한 제어기 구현)

  • 남노현;이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.257-260
    • /
    • 1997
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link is hinged on the plate to free for rotation in the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though the proposed inverted pendulum has no actuator in lower hinge. The algorithm to control the inverted pendulum is consisted of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a feedback linearization control for the rest of the range. Concept of the virtual work is employed to drive the linearlized model for the state feedback controller. The feedback linearization controller drives a DC motor with the modified reference joint angle from the fuzzy controller which adjusts a upright posture of a proposed pendulum system. Finally, the experiments are conducted to show the validity of the proposed controller.

  • PDF

Feedback linearization of the electro-hydraulic velocity control system (전기유압 속도제어 시스템의 귀환 선형화 제어)

  • 김영준;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1116-1121
    • /
    • 1991
  • In this paper the feedback linearization of the valve-controlled nonlinear hydraulic velocity control system and the Implementation of the digital state feedback controller is studied. The C.inf. nonlinear transformation to the electro-hydraulic velocity control system, which transforms nonlinear system to linear equivalent one, is obtained. It is shown that this transformation Is global one. The digital controller to this linearized model is obtained by using the one-step ahead state estimator and implemented to real plant. The proposed method In this paper is easier to implement than other proposed methods and it is possible to control in real tine. The experiment and simulation study show that the implementation of the digital state feedback controller based on the feedback linearized model is successful.

  • PDF

Linearizing and Control of a Three-phase Photovoltaic System with Feedback Method and Intelligent Control in State-Space

  • Louzazni, Mohamed;Aroudam, Elhassan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.297-304
    • /
    • 2014
  • Due to the nonlinearity and complexity of the three-phase photovoltaic inverter, we propose an intelligent control based on fuzzy logic and the classical proportional-integral-derivative. The feedback linearization method is applied to cancel the nonlinearities, and transform the dynamic system into a simple and linear subsystem. The system is transformed from abc frame to dq0 synchronous frame, to simplify the state feedback linearization law, and make the close-loop dynamics in the equivalent linear model. The controls improve the dynamic response, efficiency and stability of the three-phase photovoltaic grid system, under variable temperature, solar intensity, and load. The intelligent control of the nonlinear characteristic of the photovoltaic automatically varies the coefficients $K_p$, $K_i$, and $K_d$ under variable temperature and irradiation, and eliminates the oscillation. The simulation results show the advantages of the proposed intelligent control in terms of the correctness, stability, and maintenance of its response, which from many aspects is better than that of the PID controller.

NONLINEAR OUTPUT VOLTAGE CONTROLOF PWM DC-DC CONBERTERS BY FEEDBACK LINERIZATION

  • Jo, Byeong-Rim;Min, Byung-Hoon;Choi, Hang-June
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.223-226
    • /
    • 1995
  • New output voltage control technique based on the simple feedback linearization is proposed. The system states are first divided into fast states and slow states. Then, the control stage is composed of the fast inner current control loop and the slow outer voltage control loop. From the inner loop, the average control is derived by the sliding mode concept and it is inserted into the dynamic equations of the slow states in the outer loop. Applying the feedback linearization technique to the obtained large-signal models of the PWM dc-dc converters, linearized large-signal models are obtained for the slow states. With this technique, the output voltage controller of the PWM dc-dc converters can be designed easily in the global state space and its control performance can also be much improved.

  • PDF

Feedback Linearization Control of PWM Converters with LCL Input Filters (LCL 입력 필터를 갖는 PWM 컨버터의 궤환 선형화 제어)

  • Kim, Dong-Eok;Lee, Dong-Choon;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.55-62
    • /
    • 2008
  • This paper proposes a feedback linearization control scheme of AC/DC PWM converters with LCL input filters using no damping resisters. This feedback linearization scheme can eliminate the non-linearity of the system. So, the controller of the system can be designed by using linear control theory, which gives a good transient response. The cascade structure of the controller makes the converter current be controlled within a certain limit. To reduce the number of sensors, the source voltage and current is estimated. The validity of the proposed control algorithm is verified by simulation and experimental results.

Adaptive Sliding Mode Control based on Feedback Linearization for Quadrotor with Ground Effect

  • Kim, Young-Min;Baek, Woon-Bo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2018
  • This paper introduces feedback linearization (FL) based adaptive sliding mode control (ASMC) effective against ground effects of the quadrotor UAV. The proposed control has the capability of estimation and effective rejection of those effects by adaptive mechanism, which resulting stable attitude and positioning of the quadrotor. As output variables of quadrotor, x-y-z position and yaw angle are chosen. Dynamic extension of the quadrotor dynamics is obtained for terms of roll and pitch control input to be appeared explicitly in x-y-z dynamics, and then linear feedback control including a ground effect is designed. A sliding mode control (SMC) is designed with a class of FL including higher derivative terms, sliding surfaces for which is designed as a class of integral type of resulting closed loop dynamics. The asymptotic stability of the overall system was assured, based on Lyapunov stability methods. It was evaluated through some simulation that attitude control capability is stable under excessive estimation error for unknown ground effect and initial attitude of roll, pitch, and yaw angle of $30^{\circ}$ in all. Effectiveness of the proposed method was shown for quadrotor system with ground effects.

Feedback Linearization of an Electro-Hydraulic Velocity Control System and the Implementation of the Digital State Feedback Controller (전기유압 속도제어 시스템의 궤환 선형화 및 이에 대한 디지틀 상태 궤환 제어의 구현)

  • 김영준;장효환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1036-1055
    • /
    • 1992
  • In this paper the feedback linearization of the valve-controlled nonlinear hydraulic velocity control system and the implementation of the digital state feedback controller is studied. The $C^{\infty}$ nonlinear transfomation to the electro-hydraulic velocity control system, which transforms nonlinear system to linear equivalent one, is obtained. It is shown that this transformation is global one. The digital controller to this linearized model is obtained by using the one-step ahead state estimator and implemented to real plant. The proposed implementation method is easier than the other proposed methods and it is possible to control in real time. The experiment and simulation study show that the implementation of the digital state feedback controller based on the feedback linearized model is successful..

Nonlinear Control of Residual Say of a Container Crane in the Perspective of Controlling an Underactuated System (불충분한 작동기를 가진 매니퓰레이터의 비선형제어)

  • 김영민;홍금식;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.249-252
    • /
    • 1997
  • In this paper the sway-control problem of a container crane is investigated in the perspective of controlling an underactuated mechanical system. For fast loading/unloading of containers from the ship, quick suppression of the remaining swing motion of the container at the end of each trolley stroke is crucial. Known nonlinearities are fully incorporated by feedback linearization. Robustness is enhanced by variable structure control. Compared with the linear LQ control, much better performance can be obtained.

  • PDF

Indirect adaptive nonlinear control for power system stabilization (전력계통안정화를 위한 간접적응 비선형제어)

  • 이도관;윤태웅;이병준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.454-457
    • /
    • 1997
  • As in most industrial processes, the dynamic characteristics of an electric power system are subject to changes. Amongst those effects which cause the system to be uncertain, faults on transmission lines are considered. For the stabilization of the power system, we present an indirect adaptive control method, which is capable of tracking a sudden change in the effective reactance of a transmission line. As the plant dynamics are nonlinear, an input-output feedback linearization method equipped with nonlinear damping terms is combined with an identification algorithm which estimates the effect of a fault. The stability of the resulting adaptive nonlinear system is investigated.

  • PDF