• Title/Summary/Keyword: feedback-linearization

Search Result 341, Processing Time 0.025 seconds

Development of controller for a lateral motion of a staggered type Magnetic wheel with EMS system using feedback linearization (비선형 궤환 선형화 기법을 이용한 자기부상 열차의 부상 및 안내제어기의 개발)

  • Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.366-369
    • /
    • 1991
  • A nonlinear controller based on feedback linearization method is proposed for an electromagnetic suspension system. After exactly linearizing the system with nonlinear feedback, linear control technique is applied. Modeling of stagger typed magnet is introduced and controlled for not only levitation, but guidance. By the feedback linearization, the nonlinear, MIMO system is linearized and decoupled, so we can use linear control law. The simulation of this system control skim is demonstrated. Robustness properties of the proposed controller with respect to the load variations and external disturbance is also analyzed for a multi input multi output system. In this properties, the boundary of variation is proposed.

  • PDF

Comparison of PID and Feedback Linearization Control for Magnetic Levitation System (자기부상 시스템의 PID 제어와 Feedback Linearization 제어와의 성능비교)

  • 박종석;김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.263-263
    • /
    • 2000
  • Electromagnetic Suspension(EMS) System produces no noise, friction and heat through non-contacting operation Therefore, the applicable device using EMS system has a lot of attraction in case of the high-speed and non-contacting transmission EMS with nonlinear properties requires a precise airgap position control and stable kinematics characteristics under the disturbances, In this study, the nonlinear system was linearized by a Nonlinear Feedback Lineariztion(NFL) method. The NFL method requires that the modelling should be exact, and the state variables should be measured and a rapidly operating controller be necessary on account of a heavy data calculating In the experiments. the ideal control characteristics of the NFL was acquired through simulation at first. then the characteristics of the actual system were compared with those of simulation. In addition, the results by NFL were examined and analysed considering the characteristics of the PID control. The Control by NFL shows much stable control characteristics than the PID control. Whereas, the steady state errors occur for various disturbances. hence a robust control design is remained for a further study.

  • PDF

Position Control of a 1/4 Car Suspension Simulator using a Feedback Linearization Controller (피드백 선형화 제어기를 사용한 1/4 차량 현가장치 시뮬레이터의 위치 제어)

  • Kim, T.H.;Lee, I.Y.
    • Journal of Drive and Control
    • /
    • v.9 no.3
    • /
    • pp.8-15
    • /
    • 2012
  • In the study, a control strategy using a feedback linearization compensator and a disturbance observer was suggested and applied to a hydraulic control system for a vehicle suspension simulator. Although the hydraulic system has comparatively big external loads composed by constant and varying loads, it is ascertained that excellent control performances are obtained with the suggested control strategy.

Shifting Controller Design via Exact Feedback Linearization of a Spherical Continuously Variable Transmission (구체무단변속기의 비선형 피드백제어기 설계)

  • Kim, Jung-Yun;Kim, Kye-Ree;Park, Yeong-Il;Park, Chong-Woo;Lee, Jang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.110-115
    • /
    • 2001
  • The spherical CVT, intended to overcome some of the limitations of existing CVT designs, is marked by its simple kinematic design, improved efficiency of the shift actuator, and IVT characteristics, i.e., the ability of smooth transition between the forward, neutral, and reverse states without the need for any brakes or clutches. And it has been promised much possibility of energy savings and various applications for small power capacity machinery. Due to the nonlinearity of the spherical CVT shifting dynamics, however the original open-loop system is inherently unstable. Hence a feedback controller is necessary to make the system stable and to achieve effective tracking performance. To do this, we designed a feedback controller that cancels nonlinearities and transforms the original nonlinear system dynamics into a stable and controllable linear one, based on the input-state linearization method.

  • PDF

A comparison of PID control with intelligent control for continuous casting (연주 몰드레벨제어에 있어서 PID제어와 지능제어기법의 비교)

  • 김주만;이진수;이덕만
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1064-1067
    • /
    • 1996
  • This paper describes the design and implementation of an intelligent controller for continuous casting process. The proposed controller adopted a fuzzy control with feedback linearization. The simulation result shows that proposed intelligent controller is superior to the conventional PID controller.

  • PDF

Stabilization of Underwater Glider by Buoyancy and Moment Control: Feedback Linearization Approach (부력 및 모멘트 제어를 이용한 수중글라이더의 안정화: 피드백 선형화 접근법)

  • Jee, Sung Chul;Lee, Ho Jae;Kim, Moon Hwan;Moon, Ji Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.546-551
    • /
    • 2014
  • This paper addresses a feedback linearization control problem for the nonlinear dynamics of an underwater glider system. We consider the buoyancy and moment as control inputs, which come from the mass variation and elevator control, respectively. Moment-to-force coupling increases the nonlinearities, which make the controller design difficult. By using a feedback linearization technique, we convert the nonlinear underwater glider to an equivalent linear model and design a linear controller. The controller for the equivalent converted linear system is designed using sufficient conditions in terms of linear matrix inequalities. Then, the control input of the nonlinear model of an underwater glider is formulated from the linear control input. An experimental examination is implemented to verify the effectiveness of the proposed technique.

Robust Stability Analysis and Design of Fuzzy Model Based Feedback Linearization Control Systems (퍼지 모델 기반 피드백 선형화 제어 시스템의 강인 안정성 해석과 설계)

  • 박창우;이종배;김영욱;성하경
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.79-90
    • /
    • 2004
  • Systematical robust stability analysis and design scheme for the feedback linearization control systems via fuzzy modeling are proposed. It is considered that uncertainty and disturbances are included in the Takagi-Sugeno fuzzy models representing the nonlinear plants. Robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions and by converting the analysis and design problems into the linear matrix inequality optimization, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

High-Performance Control of Three-Phase Four-Wire DVR Systems using Feedback Linearization

  • Jeong, Seon-Yeong;Nguyen, Thanh Hai;Le, Quoc Anh;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.351-361
    • /
    • 2016
  • Power quality is a critical issue in distribution systems, where a dynamic voltage restorer (DVR) is commonly used to mitigate the voltage disturbances for loads. This paper deals with a nonlinear control for the three-phase four-wire (3P-4W) DVR under a grid voltage unbalance and nonlinear loads in the distribution system, where a novel control scheme based on the feedback linearization technique is proposed. Through feedback linearization, a nonlinear model of a DVR with a PWM voltage-source inverter (VSI) and LC filters is linearized. Then, the controller design of the linearized model is performed by applying the linear control theory, where the load voltages are kept constant by controlling the d-q-0 axis components of the DVR output voltages. To keep the load voltage unchanged, an in-phase compensation strategy is employed, where the load voltages are recovered to be the same as the previous voltage without a change in the magnitude. With this strategy, the performance of the DVR becomes faster and more stable even under unbalanced source voltages and nonlinear loads. The validity of the proposed control strategy has been verified by simulation and experimental results.