• Title/Summary/Keyword: feed controller

Search Result 259, Processing Time 0.027 seconds

A Study on the Precise Tracking Control in the Repetitive Manufacturing Process (반복 생산 공정에서의 정밀 추종제어에 관한 연구)

  • 신춘식;안영주;변기식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.112-118
    • /
    • 2000
  • A modified repetitive control is formulated and analyzed in the discrete-time domain. Sufficient conditions for the stability of a class of repetitive controllers are given by means of the regeneration spectrum method. When a periodic signal input is drived into the two-mass-spring plant, the performance of the proposed controller which comprises a low-pass filter and two feed-forward compensators, turns out highly accurate by comparing the tracking result from the conventional LQ controller.

  • PDF

Design of an LMI- Based H^{\infty} Servo Controller for Tandem Cold Mill (LMI 에 기초한 연속 냉간압연기의 H^{\infty} 서보 제어기 설계)

  • Kim, In-Soo;Hwang, I-Cheol;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 2000
  • In this paper, we design a H^\infty servo controller for gauge control of tandem cold mill. To improve the performance of the AGC(Aotomatic Gauge Control) system based on the Taylor linearized model of tandem cold mill, the H^\infty servo controller is designed to satisfy robust stability, disturbance attenuation and robust tracking properties. The H^\infty servo controller problem is modified as an usual H^\infty control problem, and the solvability condition of the H^\infty servo problem depends on the solvability of the modified H^\infty control problem. Since this modified problem does not satisfied standard assumptions for the H^\infty control problem, it is solved by an LMI(Linear Matrix Inequality) technique. Consequently, the comparison between the H^\infty servo controller and the existing PID/FF(FeedForward) controller shows the usefulness of this study.

  • PDF

An Integrated Approach to the Analysis and Design of a Three-Axis Cross-Coupling Control System

  • Jee, Sung-Chul;Lee, Hak-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2007
  • We propose a controller design analysis for a cross-coupling control system, which is essential for achieving high contouring accuracy in multi-axis CNC systems. The proposed analysis combines three axial controllers for each individual feed drive system together with a cross-coupling controller at the beginning of the design stage in an integrated manner. These two types of controllers used to be separately designed and analyzed since they have different control objectives. The proposed scheme is based on a mathematical formulation of a three-dimensional contour error model and includes a stability analysis for the overall control system and a performance analysis in terms of contouring and tracking accuracy at steady state. A computer simulation was used to demonstrate the validity of the proposed methodology. The performance variation was investigated under different operating conditions and controller gains, and a design range was elicited that met the given performance specifications. The results provide basic guidelines in systematic and comprehensive controller designs for multi-axis CNC systems. A cross-coupling control system was also implemented on a PC-based three-axis CNC testbed, and the experimental results confirmed the usefulness of the proposed control system in terms of contouring accuracy.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

Immune Algorithms Based 2-DOF Controller Design and Tuning For Power Stabilizer

  • Kim, Dong-Hwa;Park, Jin-Ill
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2278-2282
    • /
    • 2003
  • In this paper the structure of 2-DOF controller based on artificial immune network algorithms has been suggested for nonlinear system. Up to present time, a number of structures of the 2-DOF controllers are considered as 2-DOF (2-Degrees Of Freedom) control functions. However, a general view is provided that they are the special cases of either the state feedback or the modification of PID controllers. On the other hand, the immune network system possesses a self organizing and distributed memory, also it has an adaptive function by feed back law to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation, since antibody recognizes specific antigens which are the foreign substances that invade living creatures. Therefore, it can provide optimal solution to external environment. Simulation results by immune based 2-DOF controller reveal that immune algorithm is an effective approach to search for 2-DOF controller.

  • PDF

Impelmentation of 2-DOF Controller Using Immune Algorithms

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1531-1536
    • /
    • 2003
  • In this paper the structure of 2-DOF controller based on artificial immune network algorithms has been suggested for nonlinear system. Up to present time, a number of structures of the 2-DOF controllers are considered as 2-DOF (2-Degrees Of Freedom) control functions. However, A general view is provided that they are the special cases of either the state feedback or the modification of PID controllers. On the other hand, The immune network system possesses a self organizing and distributed memory, also it has an adaptive function by feed back law to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation, since antibody recognizes specific antigens which are the foreign substances that invade living creatures. Therefore, it can provide optimal solution to external environment. Simulation results by immune based 2-DOF controller reveal that immune algorithm is an effective approach to search for 2-DOF controller.

  • PDF

Positioning control of pzt actuators using neuro control with hysteresis model (ICCAS 2003)

  • Lee, Byung-Ryong;Lee, Soo-Hee;Yang, Soon-Yong;Ahn, Kyung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.382-385
    • /
    • 2003
  • In this paper, in order to improve the control performance of piezoelectric actuator, an integrated control structure is proposed. The control structure consists of inverse hysteresis model , to compensate the hysteresis nonlinearty problem, and feedforward - feedback controller to give a good tracking performance. The inverse hysteresis model and neural network are used as feed-forward controller, and PID controller is used as a feedback controller. From diverse experiments it is concluded that the proposed control scheme gives good tracking performance than the classical control does.

  • PDF

Self-Tuning Fuzzy Logic Controller for a Dual Star Induction Machine

  • Merabet, Elkheir;Amimeur, Hocine;Hamoudi, Farid;Abdessemed, Rachid
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.133-138
    • /
    • 2011
  • This paper proposes a simple but robust self-tuning fuzzy logic controller for the speed regulation of a dual star induction machine based on indirect field oriented control. For feed the two star of this machine, two voltage source inverters based on sinus-triangular pulse-width modulation techniques are introduced. The simulation results show the robustness and good performance of the proposed controller.

Linear motor controller design and operation status monitoring (리니어모터의 제어기 설계 및 운전상태 예측에 관한 연구)

  • 유송민;신관수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.99-104
    • /
    • 2001
  • The neural network method has been introduced to design a controller for linear motor feed system and system operation status was monitored. It is most difficult to achieve controller gain tuning because of the information limit. Regardless of the system structure, conventional control gain could be adjusted minimizing the resulting error for both position and velocity using the proposed method. Slight performance deterioration was observed at the small value of training epoch. Different controller performance for position was observed with respect changed sampling time. Actuated system performance was monitored using neural network signal processing and operational status was predicted with the rate of 80% approximately.

  • PDF

Development of Linear motor diver for high speed and stiffness feed system (고속 고강성 이송시스템을 위한 리니어 모터 드라이브 개발)

  • 최정원;김상은;이기동;박정일;이석규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.167-169
    • /
    • 2001
  • In this paper, a controller design for high speed and stiffness linear motor is implemented. The designed controller is mainly composed of speed and current controller, which are carried out by the high-speed digital signal processor(DSP). In addition the PWM inverter is controlled by space voltage PWM method. This system is implemented by using 32-bit DSP(TMS320C31), a high-integrated logic device(EPM7128), and IPM(Intelligent Power Module) for compact and powerful system design. The experimental results show the effective performance of controller for high speed and stiffness linear motor.

  • PDF