• Title/Summary/Keyword: fecal noxious gas

Search Result 43, Processing Time 0.025 seconds

Effects of Anion Supplementation on Growth Performance, Nutrient Digestibility, Meat Quality and Fecal Noxious Gas Content in Growing-finishing Pigs

  • Yan, L.;Han, D.L.;Meng, Q.W.;Lee, J.H.;Park, C.J.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1073-1079
    • /
    • 2010
  • Forty-eight ((Duroc${\times}$Yorkshire)${\times}$Landrace) pigs with an average initial body weight (BW) of $48.47{\pm}1.13\;kg$ were used in a 12-week growth trial to investigate the influence of Anion (silicate) supplementation on growth performance, nutrient digestibility, meat quality and fecal noxious gas content in growing-finishing pigs. Pigs were allotted into three dietary treatments in a randomized complete block design according to sex and initial BW. Each dietary treatment consisted of four replications with four pigs per pen. Dietary treatments included: i) CON (basal diet), ii) HCI (basal diet+3 g/kg Anion), iii) HCII (basal diet+6 g/kg Anion). No significant difference (p>0.05) was detected for average daily gain (ADG), average daily feed intake (ADFI) and gain/feed ratio (G/F) throughout the experiment, although dietary supplementation of Anion numerically increased these characteristics compared with CON. The dietary HCI group significantly (p<0.05) increased the coefficient of total tract apparent digestibility (CTTAD) of dry matter (DM), nitrogen (N) and energy compared with the CON group (p<0.05). No significant difference was observed in meat quality except that meat firmness was linearly (p<0.05) increased by the Anion supplementation, while an increased tendency in meat color and a decreased tendency in 2-thiobarbituric acid reactive substances (TBARS) was also observed (p<0.10). Anion supplementation linearly (p<0.05) decreased the fecal $NH_3$ compared with the CON group. However, dietary Anion supplementation at 3 g/kg decreased the $H_2S$ concentration compared with CON, while no significant difference was detected in the HCII group, although the $H_2S$ emission was numerically decreased compared with CON. In conclusion, supplementation of the diet with 3 g/kg Anion was found to exert a beneficial effect on nutrient digestibility and meat quality of growing-finishing pigs, and concomitantly decreased the noxious gas emission without negative effect on growth performance.

Effects of Essential Oils Supplementation on Growth Performance, IgG Concentration and Fecal Noxious Gas Concentration of Weaned Pigs

  • Cho, J.H.;Chen, Y.J.;Min, B.J.;Kim, H.J.;Kwon, O.S.;Shon, K.S.;Kim, I.H.;Kim, S.J.;Asamer, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.1
    • /
    • pp.80-85
    • /
    • 2006
  • Ninety six crossbred pigs (Landrace${\times}$Yorkshire${\times}$Duroc) were used to determine the effects of essential oils (Fresta F $Conc^{(R)}$) supplementation on growth performance, immune response and fecal noxious gas of weaned pigs. Treatments were 1) NC (negative control; basal diet without antibiotics), 2) PC [positive control; basal diet+CSP (CTC+Sulfathiazole+Penicillin) 0.1%], 3) NCF (basal diet+Fresta F $Conc^{(R)}$ 0.03%) and 4) PCF [basal diet+CSP (CTC+Sulfathiazole+Penicillin) 0.1%+Fresta F $Conc^{(R)}$ 0.02%]. From d 0 to 14, ADFI was increased in pigs fed PCF diet (p<0.05). From d 14 to 28, pigs fed PCF diet had greater ADG and ADFI than pigs fed NC diet (p<0.05). From d 28 to 49, ADG and ADFI in pigs fed PCF diet were higher than in pigs fed NC diet (p<0.05). Through the entire experimental period, ADG and ADFI in pigs fed PCF diet were the highest compared to pigs fed NC and PC diets (p<0.05). There was no significant difference in fecal consistency score among the treatments (p>0.05). No statistical differences (p>0.05) were found in red blood cells (RBC) counts, white blood cells (WBC) counts, lymphocyte counts, total protein and albumin. Serum IgG concentration of PCF treatment was greater than that of other treatments (p<0.05). From d 0 to 14, there was no significant difference in digestibility of dry matter and nitrogen among the treatments (p>0.05). From d 14 to 28, digestibility of dry matter in pigs fed PC, NCF and PCF diets was higher than that of pigs fed NC diet (p<0.05) and treatments with added essential oils were higher than other diets on digestibility of nitrogen (p<0.05). Also, from d 28 to 49, digestibility of nitrogen in pigs fed PCF diet was the highest among others (p<0.05). On d 14 and 28, no statistical differences (p>0.05) were found in volatile fatty acid (VFA), ammonia nitrogen ($NH_3$-N) and hydrogen sulfide ($H_2S$) concentrations among treatments. On d 49, there was no significant difference in VFA concentration among the treatments (p>0.05). $NH_3$-N concentration in pigs fed PCF diet was lower than in pigs fed other diets (p<0.05). $H_2S$ concentration in pigs fed diets with added essential oils was lower than others. In conclusion, the results suggest that the dietary addition of essential oils and antibiotics into diets for weanling pigs improved growth performance, IgG concentration and nitrogen digestibility and decreased noxious gas concentration. Essential oils can be used to partly replace antibiotics in diets for weaned pigs without negative affects on growth performance.

Influence of Dietary Germanium Biotite on Egg Quality and Fecal Noxious Gas Content in Laying Hens (산란계 사료에 게르마늄 흑운모의 첨가가 난각특성 및 분내 유해가스 함량에 미치는 영향)

  • 이원백;김인호;홍종욱;권오석;이상환;민병준;정연권
    • Korean Journal of Poultry Science
    • /
    • v.30 no.1
    • /
    • pp.61-66
    • /
    • 2003
  • This study was conducted to investigate the effects of dietary germanium biotite supplementation on egg quality and fecal noxious gas content in laying hens. One hundred and forty-four 40-wk-old, ISA Brown layers were used in this experiment. Dietary treatments were 1) CON(control diet), 2) GB0.5(control diet + 0.5% germanium biotite), 3) GB1.0 (control diet + 1.0% germanium biotite) and 4) GB1.5(control diet + 1.5% germanium biotite). Hen-day egg Production and egg shell breaking strength were not influenced by germanium biotite supplementation. However, egg weight decrease as the level of germanium biotite supplementation increased in the diets increased(Cubic effect, p<0.02). Eggshell thickness, yolk color and yolk index were not influenced by garmanium biotite supplementation. Serum triglyceride concentration as dietary germanium biotite increased (linear effect P<0.02; quadratic effect, p<0.05). Dietary supplementation of germanium biotite reduced fecal NH$_3$-N concentration (P<0.01), propionic acid(P<0.01), butyric acid( P<0.05) and acetic aicd(P<0.01) concentrations in the feces. In conclusion, the results of this experiment indicated that dietary germanium biotite supplementation did not affect egg shell quality, but reduced fecal NH$_3$-N concentration.

Evaluation of rapeseed meal as a protein source to replace soybean meal in growing pigs

  • Kim, Jong Keun;Lei, Xin Jian;Lee, Sang In;Lee, Il Seok;Kim, In Ho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.235-243
    • /
    • 2017
  • A total of 112 crossbred pigs [(Yorkshire ${\times}$ Landrace) ${\times}$ Duroc] with an average body weight (BW) of $27.98{\pm}1.28kg$ were used to evaluate the effects of replacing soybean meal (SBM) with rapeseed meal (RSM) as a source of protein on growth performance, nutrient digestibility, blood characteristics, and fecal noxious gas emission in growing pigs. The pigs were blocked and stratified based on BW into one of four dietary treatments in a 6-week trial. Each treatment consisted of 7 replicate pens with 4 pigs per pen (2 barrows and 2 gilts). Treatments were 1) maize-SBM based diet, 2) diet containing 2% RSM, 3) diet containing 4% RSM, and 4) diet containing 6% RSM. Supplementation with RSM resulted in no differences in growth performance, nutrient digestibility, and noxious gas emission, as compared with SBM supplementation during the experimental period (p > 0.05). Pigs fed with increased dietary RSM (0, 2, 4, and 6% of feed) had linear decreases in average daily gain (ADG) (p = 0.010) and nitrogen digestibility (p = 0.036) and a linear increase in blood creatinine concentration. In conclusion, RSM fed pigs had no detrimental effects on their growth performance, nutrient digestibility, blood characteristics, and fecal noxious gas emissions, as compared with SBM fed pigs. Thus, RSM is a good alternative to SBM as a protein source in growing pigs' diets.

Effects of Chelated Copper and Zinc Supplementation on Growth Performance, Nutrient Digestibility, Blood Profiles, and Fecal Noxious Gas Emission in Weanling Pigs

  • Zhang, Zheng Fan;Cho, Jin Ho;Kim, In Ho
    • Journal of Animal Science and Technology
    • /
    • v.55 no.4
    • /
    • pp.295-301
    • /
    • 2013
  • This study was conducted to evaluate the effects of chelated Cu and Zn on growth performance, nutrient digestibility, blood profiles, and fecal noxious gas emission in weanling pigs. A total of 90 weanling pigs with an initial body weight (BW) of $5.27{\pm}0.04kg$ were randomly allotted to two dietary treatments for 42 d. Pigs were then fed a control diet (CON) or a Zinpro diet (CON + 0.1% chelate copper and zinc). There were nine replicate-pens with five pigs in each pen. During d 0 to 14 and d 14 to 28, the ADFI decreased (p<0.05) and the G/F increased (p<0.05) in pigs fed the Zinpro diet compared with those that received the CON diet. During d 28 to 42, the ADFI increased (p<0.05) in pigs fed the Zinpro diet relative to those fed the CON diet. Additionally, the apparent total tract digestibility of DM, N, and energy increased (p<0.05) in the Zinpro group when compared to the CON group on d 14 and 28. The lymphocyte percentage was also greater (p<0.05) in the Zinpro group than in the CON group. Overall, dietary supplementation with 0.1% chelate copper and zinc improved the growth performance and nutrient digestibility in weanling pigs.

Lactulose as a potential additive to enhance the growth performance, nutrient digestibility, and microbial shedding, and diminish noxious odor emissions in weaning pigs

  • Vetriselvi, Sampath;Jae Hong, Park;Sureshkumar, Shanmugam;In Ho, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.965-973
    • /
    • 2021
  • The intention of this research is to analyze the effects of lactulose (LAC) supplementation on the growth performance, nutrient digestibility, microbial shedding, and fecal noxious gas emissions on weaning pigs in a 42-day trial. Based on the initial body weight and sex, a total of 255 piglets (21 day old) were randomly allocated into one of three dietary treatments with 15 replications and five pigs (two female and three male) per pen. The dietary treatments were as follows: a corn-soybean meal-based basal diet (CON) supplemented with 0, 1, and 2 g·kg-1 of LAC. During phase 1, significant (p < 0.05) increases in the average daily feed intake and average daily gain (ADG) were observed, whereas during phase 2 and overall experimental period, significant improvements (p < 0.05) in the body weight, ADG, and gain to feed ratio were observed in pigs fed a graded level of LAC compared to those fed the CON diet. Additionally, dietary LAC supplementation significantly improved (p < 0.05) the nutrient digestibility dry matter, nitrogen, and gross energy in both phase 1 and phase 2. Moreover, the inclusion of LAC supplementation significantly increased (p < 0.05) the fecal Lactobacillus counts and reduced (p > 0.05) the E. coli counts in pigs. Furthermore, LAC supplementation reduced (p > 0.05) fecal ammonia and hydrogen sulfide gas emissions during phase 2. The results here indicate that the addition of lactulose at 1 g·kg-1 and/or 2 g·kg-1 would be optimal to improve the performance outcomes of weaning piglets.

Effects of Probiotics as an Alternative for Antibiotics on Growth Performance, Nutrient Digestibility, Noxious Gas Emission and Fecal Microbial Population in Growing Piglets (항생제 대체 생균제가 자돈의 생산성,영양소 이용률, 유해가스 발생량 및 분내 미생물 수에 미치는 영향)

  • Kim, Jong-Duk;Chung, Heung-Woo;Shim, Kum-Seob;Park, Seung-Young;Ju, Jong-Cheol;Song, Jae-Jun;Lee, Kyung-Ho;Park, Joong-Kook;Park, Do-Yun;Kim, Chang-Hyun
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.4
    • /
    • pp.527-539
    • /
    • 2010
  • This study was conducted to determine the effect of probiotics as an alternative for antibiotics on growth performance, nutrient digestibility, noxious gas emission and fecal microbial population in growing piglets. A total of 96 piglets ($22.5{\pm}1.3$kg average body weight) were allotted to 3 different treatment groups and replicated 4 times with 8 piglets per replicate in randomized complete block design. Treatments were T1) (Control, basal diet+0.2% antibiotics), T2) 0.2% probiotics complex and T3) 0.3% Bacillus probiotics. During the whole experiment period, there were no differences (p>0.05) in average daily gain (ADG), average daily feed intake (ADFI) and feed efficiency. However, digestibility of dry matter, crude protein, ether extract, nitrogen free extract and crude ash were showed higher in probiotics groups (T2 and T3) than those of control. In noxious gas emission, ammonia, amine, hydrogen sulfide and mercaptan were significantly (p<0.05) reduced in T2 and T3 treatments compared to those in control. Moisture content of feces was not significantly different among treatments. The colony forming units (CFU) of total bacteria, E. coli and thermoduric bacteria in feces were significantly different among treatments. The CFU of total bacteria, E. coli and thermoduric bacteria in T3 treatment were reduced by feeding probiotics B. From this study, we suggest that probiotics A and B are likely able to improve the growth performance and nutrients digestibility, reduce noxious gas emission and change the fecal microbial composition in growing piglets.

Effects of Feeding Levels and Particle Size of Germanium Biotite on Pig Performance (돼지 생산성에 있어 게르마늄흑운모의 첨가수준 및 입자도의 효과)

  • Lee, W.B.;Kim, I.H.;Hong, J.W.;Kwon, O.S.;Min, B.J.;Shon, K.S.;Jung, Y.K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.787-796
    • /
    • 2003
  • Two experiments were conducted to investigate the effect of germanium biotite (GB) on growth performance, nutrient digestibility and fecal gas emission in pigs. In Exp 1., a total of one hundred nursery pigs (initial body weight 13.12${\pm}$0.15kg) were used in a 21 d growth assay. The five treatments were control (CON, basal diet), GB0.5-200 (basal diet + 0.5% GB, 200mesh), GB1.0-200 (basal diet + 1.0% GB, 200mesh), GB0.5-325 (basal diet + 0.5% GB, 325mesh), GB1.0-325 (basal diet + 1.0% GB, 325mesh). Each treatment had four replicates with five pigs per replicate. ADG, ADFI and gain/feed were not significantly different among the treatments. Fecal NH3-N concentration of pigs fed the GB325 diet was lower than that of pigs fed the GB200 diet (P=0.01). The GB treatments reduced fecal volatile fatty acids significantly compared to the CON (propionic acid, P=0.01; butyric acid, P=0.01; acetic acid, P=0.02). Especially, fecal propionic acid concentration of pigs fed the GB325 diets was lower than that of pigs fed the GB200 diets (P=0.02). In Exp 2., a total of seventy five pigs (initial body weight 21.18${\pm}$0.15kg) were used in a 28 d growth assay. The treatments were same as described for Exp. 1. Each treatment had five replicates with three pigs per replicate. The GB1.0 treatments significantly increased the ADG compared to the GB0.5 treatments (P=0.03). The DM and N digestibility of pigs fed the GB1.0 diets were higher than that for pigs fed the GB0.5 diets (P=0.01). Also, the Ca digestibility of pigs fed the GB diets was higher than that for pigs fed the CON diets (P=0.01). The fecal NH3-N concentrations for the GB treatments were lower than that for the CON (P=0.01). The GB325 treatments significantly decreased the fecal NH3-N concentration compared to the GB200 treatments (P=0.03). The fecal butyric acid concentration for the GB325 treatments was lower than that for the GB200 treatment (P=0.04). In conclusion, the results obtained from these feeding trials suggest that the dietary GB for nursery pigs affects fecal noxious gas emission. In growing pigs, dietary GB was effective to improve ADG and decrease fecal noxious gas emission.

A preliminary evaluation on mixed probiotics as an antimicrobial spraying agent in growing pig barn

  • Shanmugam, Sureshkumar;Jae Hong, Park;In Ho, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1035-1045
    • /
    • 2022
  • The purpose of this study is to examine whether spraying an anti-microbial agent into the slurry pit will reduce the noxious odor substances from piggery barns. For this, a total of 200 crossbred ([Landrace × Yorkshire] × Duroc) growing pigs with an initial average body weight (BW) of 23.58 ± 1.47 kg were selected and housed in two different rooms, i.e. control (CON) and treatment (TRT). Each room has 100 pigs (60 gilts and 40 borrows). For a period of 42 days, all pigs were fed with corn-soybean meal-based basal diet. Later the noxious odor substances were measured by the following methods. First, fecal samples were randomly collected and stored in sealed and unsealed containers, and sprayed with the non-anti-microbial agent (NAMA) (saline water) and multi-bacterial spraying (MBS) agent (200 :1, mixing ratio-fecal sample : probiotic), Second, the slurry pit of CON and TRT rooms were directly sprayed with NAMA and MBS, respectively. The fecal sample that was stored in sealed and un-sealed containers and sprayed with MBS significantly reduced NH3 and CO2 concentration at the end of day 7. However, at the end of day 42, the fecal sample showed a lower H2S, methyl mercaptans, acetic acid, and CO2 concentration compared to the unsealed container. Moreover, at the end of days 7, 14, 21, 28, 35, and 42 compared to the CON room and TRT room slurry pit emits lower concentrations of NH3, acetic acid, H2S, and methyl mercaptans, and CO2 into the atmosphere. Based on the current findings, we infer that spraying anti-microbial agents on pig dung would be one of the better approaches to suppress the odor emission from the barn in the future.

The Effects of Dietary Biotite V Supplementation on Growth Performance, Nutrients Digestibility and Fecal Noxious Gas Content in Finishing Pigs

  • Chen, Y.J.;Kwon, O.S.;Min, B.J.;Shon, K.S.;Cho, J.H.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1147-1152
    • /
    • 2005
  • Two experiments were conducted to evaluate the effects of dietary Biotite V (BV) supplementation on growth performance, nutrients digestibility and fecal noxious gas content in finishing pigs. In Exp. 1, a total of eighty pigs (initial body weight 88.0${\pm}$1.35 kg) were used in a 35-d growth trial. Pigs were blocked by weight and allotted to five dietary treatments in a randomized complete block design. There were four pigs per pen and four pens per treatment. Dietary treatments included: 1) Control (CON; basal diet), 2) 200 mesh BV1.0 (basal diet+200 mesh Biotite V 1.0%), 3) 325 mesh BV1.0 (basal diet+325 mesh Biotite V 1.0%), 4) 200 mesh BV2.0 (basal diet+200 mesh Biotite V 2.0%) and 5) 325 mesh BV2.0 (basal diet+325 mesh Biotite V 2.0%). Through the entire experimental period, there were no significant differences in ADG, ADFI and gain/feed among the treatments (p>0.05). With the addition of Biotite V in diet, DM and N digestibilities were increased significantly (p<0.01). Also, Ca and P digestibilities tended to increase in pigs fed Biotite V supplemented diet (p<0.01) compared to pigs fed control diet. Supplementation of Biotite V in diet reduced the fecal $NH_3-N$ and volatile fatty acid (VFA) compared to CON treatment (p<0.01). In Exp. 2, a total of sixty four pigs (initial body weight 84.0${\pm}$1.05 kg) were used in a 35-d growth trial. Pigs were blocked by weight and allotted to four dietary treatments in a randomized complete block design. There were four pigs per pen and four pens per treatment. Dietary treatments included: 1) LP (low protein diet), 2) HP (high protein diet), 3) LP+BV (low protein diet+325 mesh Biotite V 1.0%) and 4) HP+BV (high protein diet+325 mesh Biotite V 1.0%). Through the entire experimental period, ADG and gain/feed tended to increase in HP and HP+BV treatments, however, there were no significant differences (p>0.05) among the treatments. With the addition of Biotite V in diets, digestibilities of nutrients (DM, N, Ca and P) were increased significantly (p<0.01). The addition of Biotite V in diets reduced the ammonia emissions in feces (p<0.01). Supplementation of Biotite V in diets also reduced the fecal propionic acid, butyric acid and acetic acid (p<0.01) compared to pigs fed diets without Biotite V. In conclusion, supplementation of Biotite V can increase nutrients digestibility and reduce fecal $NH_3-N$ and volatile fatty acid (VFA) concentrations in finishing pigs.