• Title/Summary/Keyword: fecal microbial

Search Result 195, Processing Time 0.023 seconds

Characterization of the Fecal Microbial Communities of Duroc Pigs Using 16S rRNA Gene Pyrosequencing

  • Pajarillo, Edward Alain B.;Chae, Jong Pyo;Balolong, Marilen P.;Kim, Hyeun Bum;Seo, Kang-Seok;Kang, Dae-Kyung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.584-591
    • /
    • 2015
  • This study characterized the fecal bacterial community structure and inter-individual variation in 30-week-old Duroc pigs, which are known for their excellent meat quality. Pyrosequencing of the V1-V3 hypervariable regions of the 16S rRNA genes generated 108,254 valid reads and 508 operational taxonomic units at a 95% identity cut-off (genus level). Bacterial diversity and species richness as measured by the Shannon diversity index were significantly greater than those reported previously using denaturation gradient gel electrophoresis; thus, this study provides substantial information related to both known bacteria and the untapped portion of unclassified bacteria in the population. The bacterial composition of Duroc pig fecal samples was investigated at the phylum, class, family, and genus levels. Firmicutes and Bacteroidetes predominated at the phylum level, while Clostridia and Bacteroidia were most abundant at the class level. This study also detected prominent inter-individual variation starting at the family level. Among the core microbiome, which was observed at the genus level, Prevotella was consistently dominant, as well as a bacterial phylotype related to Oscillibacter valericigenes, a valerate producer. This study found high bacterial diversity and compositional variation among individuals of the same breed line, as well as high abundance of unclassified bacterial phylotypes that may have important functions in the growth performance of Duroc pigs.

Dietary Supplementation with Raspberry Extracts Modifies the Fecal Microbiota in Obese Diabetic db/db Mice

  • Garcia-Mazcorro, Jose F.;Pedreschi, Romina;Chew, Boon;Dowd, Scot E.;Kawas, Jorge R.;Noratto, Giuliana
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1247-1259
    • /
    • 2018
  • Raspberries are polyphenol-rich fruits with the potential to reduce the severity of the clinical signs associated with obesity, a phenomenon that may be related to changes in the gut microbiota. The aim of this study was to investigate the effect of raspberry supplementation on the fecal microbiota using an in vivo model of obesity. Obese diabetic db/db mice were used in this study and assigned to two experimental groups (with and without raspberry supplementation). Fecal samples were collected at the end of the supplementation period (8 weeks) and used for bacterial 16S rRNA gene profiling using a MiSeq instrument (Illumina). QIIME 1.8 was used to analyze the 16S data. Raspberry supplementation was associated with an increased abundance of Lachnospiraceae (p = 0.009), a very important group for gut health, and decreased abundances of Lactobacillus, Odoribacter, and the fiber degrader S24-7 family as well as unknown groups of Bacteroidales and Enterobacteriaceae (p < 0.05). These changes were enough to clearly differentiate bacterial communities accordingly to treatment, based on the analysis of UniFrac distance metrics. However, a predictive approach of functional profiles showed no difference between the treatment groups. Fecal metabolomic analysis provided critical information regarding the raspberry-supplemented group, whose relatively higher phytosterol concentrations may be relevant for the host health, considering the proven health benefits of these phytochemicals. Further studies are needed to investigate whether the observed differences in microbial communities (e.g., Lachnospiraceae) or metabolites relate to clinically significant differences that can prompt the use of raspberry extracts to help patients with obesity.

Effect of different levels of fiber and protein on growth performance and fecal characteristics in weaning pigs

  • Yun, Hyeok Min;Lei, Xin Jian;Cheong, Jin Young;Kang, Jung Sun;Kim, In Ho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.366-374
    • /
    • 2017
  • This experiment was conducted to evaluate the growth performance, fecal score, and fecal microbial shedding in weaning pigs fed diets with different levels of fiber and protein. A total of 96 weaning piglets ($7.41{\pm}0.71kg$) were used in a 5-week trial. Pigs were allotted to dietary treatments based on initial body weight in a $2{\times}2$ factorial design with the following factors: dietary fiber (100 and 200 g/kg, respectively, during days 0 to 14; 175 and 300 g/kg, respectively, during days 14 to 35) and dietary protein (170 or 200 g/kg). There were 6 replicates with 4 pigs per pen. On day 14, pigs fed high protein or high fiber diets had heavier body weight (p < 0.05). During days 0 to 14, pigs fed high protein or high fiber diets grew faster (p < 0.05). Additionally, during days 14 to 35, an interactive effect of fiber and protein was found (p < 0.05) on average daily gain. The different levels of protein and fiber in diet did not affect the pigs' fecal scores (p > 0.05). However, feces from the high fiber group showed lower concentration of Escherichia coli (p < 0.05). In conclusion, the results of the present study indicate that a high protein diet improves the growth of weaning pigs especially during the first two weeks. Moreover, the increments in fiber level, even in the high protein diet, favorably decreased the number of E. coli.

Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota

  • Oh, Ju Kyoung;Vasquez, Robie;Kim, Sang Hoon;Hwang, In-Chan;Song, Ji Hoon;Park, Jae Hong;Kim, In Ho;Kang, Dae-Kyung
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1142-1158
    • /
    • 2021
  • Short-chain fatty acids (SCFAs) are metabolic products produced during the microbial fermentation of non-digestible fibers and play an important role in metabolic homeostasis and overall gut health. In this study, we investigated the effects of supplementation with multispecies probiotics (MSPs) containing Bacillus amyloliquefaciens, Limosilactobacillus reuteri, and Levilactobacillus brevis on the gut microbiota, and fecal SCFAs and lactate levels of weaned pigs. A total of 38 pigs weaned at 4 weeks of age were fed either a basal diet or a diet supplemented with MSPs for 6 weeks. MSP administration significantly increased the fecal concentrations of lactate (2.3-fold; p < 0.01), acetate (1.8-fold; p < 0.05), and formate (1.4-fold; p < 0.05). Moreover, MSP supplementation altered the gut microbiota of the pigs by significantly increasing the population of potentially beneficial bacteria such as Olsenella, Catonella, Catenibacterium, Acidaminococcus, and Ruminococcaceae. MSP supplementation also decreased the abundance of pathogenic bacteria such as Escherichia and Chlamydia. The modulation of the gut microbiota was observed to be strongly correlated with the changes in fecal SCFAs and lactate levels. Furthermore, we found changes in the functional pathways present within the gut, which supports our findings that MSP modulates the gut microbiota and SCFAs levels in pigs. The results support the potential use of MSPs to improve the gut health of animals by modulating SCFAs production.

Comparison of the effects of zinc oxide and zinc aspartic acid chelate on the performance of weaning pigs

  • Sarbani Biswas;De Xin Dang;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.125-134
    • /
    • 2024
  • In this research, the growth efficiency, nutritional utilization, fecal microbial levels, and fecal score of weaned pigs were evaluated using therapeutic zinc oxide (ZnO) and zinc aspartic acid chelate (Zn-Asp). In a 42-day feeding trial, 60 weaned pigs ([Yorkshire × Landrace] × Duroc) were arbitrarily allotted (age: 21 days; 7.01 ± 0.65 kg preliminary body weight) to 3 different treatment groups with 5 repetitions (2 male and 2 female piglets) in each pen. The trial had 2 different phases, including 1-21 days as phase 1, and 22-42 days as phase 2. The nutritional treatments were: basal diet as control (CON), basal diet incorporated with 3,000 ppm ZnO as TRT1, and basal diet incorporated with 750 ppm Zn-Asp as TRT2. In comparison to the CON group, the pigs in the TRT1 and TRT2 groups had greater (p < 0.05) body weight on day 42; an average daily gain, and an average daily feed intake on days 22-42. Furthermore, during days 1-42, the average daily gain in the treatment groups trended higher (p < 0.05) than in the CON group. Additionally, the fecal score decreased (p < 0.05) at week 6, the lactic acid bacteria count tended to increase (p < 0.05), and coliform bacteria presented a trend in reduction (p < 0.05) in the TRT1 and TRT2 groups compared to the CON group. However, there was no difference in nutrient utilization (p > 0.05) among the dietary treatments. Briefly, the therapeutic ZnO and Zn-Asp nutritional approaches could decrease fecal score and coliform bacteria, increase lactic acid bacteria, and improve growth efficiency; moreover, Zn-Asp (750 ppm) can perform a comparable role to therapeutic ZnO (3,000 ppm). So we can use Zn-Asp (750 ppm) instead of therapeutic ZnO (3,000 ppm) for the better performance of weaning pigs and the reduction of environmental pollution, as therapeutic ZnO is responsible for environmental pollution.

Current Status and Future Promise of the Human Microbiome

  • Kim, Bong-Soo;Jeon, Yoon-Seong;Chun, Jongsik
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.2
    • /
    • pp.71-79
    • /
    • 2013
  • The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human body, and identification of the functional genes expressed by this microbial community. The gut microbes have been found to be the most diverse and constitute the densest cell number in the human microbiota; thus, it has been studied more than other sites. Early results have indicated that the imbalances in gut microbiota are related to numerous disorders, such as inflammatory bowel disease, colorectal cancer, diabetes, and atopy. Clinical therapy involving modulating of the microbiota, such as fecal transplantation, has been applied, and its effects investigated in some diseases. Human microbiome studies form part of human genome projects, and understanding gleaned from studies increase the possibility of various applications including personalized medicine.

Effect of feeding mixed microbial culture fortified with trace minerals on ruminal fermentation, nutrient digestibility, nitrogen and trace mineral balance in Sheep

  • Kwak, W.S.;Kim, Y.I.;Choi, D.Y.;Lee, Y.H.
    • Journal of Animal Science and Technology
    • /
    • v.58 no.5
    • /
    • pp.21.1-21.8
    • /
    • 2016
  • Background: The aim of the present study was to determine the effects of feeding trace mineralsfortified mixed microbial culture (TMC) on ruminal fermentation, nutrient digestibility, blood electrolyte status, nitrogen balance, and trace mineral balance in sheep. Methods: Mixed microbes [0.6 % (v/w) of Enterobacter sp., Bacillus sp., Lactobacillus sp., and Saccharomyces sp.] were cultured with 99 % feedstuffs and 0.4 % trace minerals including zinc and copper for ensiling. Six sheep (a mean body weight of $46.5{\pm}1.2kg$) were fed two diets: a control diet (concentrate mix and rye straw) and an experimental diet (a control diet + 3.1 % TMC). Results: TMC feeding did not induce negative effects on ruminal fermentation, nutrient digestibility, blood electrolytes, and nitrogen balance in sheep. Feeding with TMC increased the intake of trace minerals (p < 0.05) and did not affect absorption of trace minerals in the whole digestive tract. Feeding with TMC increased fecal excretion and absorbable intake, and retention of zinc and copper (p < 0.05) by 71 % and 77 %, respectively. Conclusion: Feeding with TMC resulted in higher zinc and copper bioavailability and retention without any adverse effects on sheep performance.

Comparative Analysis of Gut Microbial Communities in Children under 5 Years Old with Diarrhea

  • Wen, Hongyu;Yin, Xin;Yuan, Zhenya;Wang, Xiuying;Su, Siting
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.652-662
    • /
    • 2018
  • Diarrhea is a global disease with a high morbidity and mortality rate in children. In this study, 25 fecal samples were collected from children under 5 years old. Seven samples had been taken from healthy children without diarrhea and marked as the healthy control group; eight samples had been sampled from children with diarrhea caused by dyspepsia and defined as the non-infectious group; and ten samples had been taken from children with diarrhea induced by intestinal infections and identified as the infectious group. We detected the microbial communities of samples by using high-throughput sequencing of 16S rRNA genes. The proportion of aerobic and facultative anaerobic microbes in samples of the infectious group was much higher than in the non-infectious group. In addition, the relative abundance of Enterococcus in the healthy control group was significantly higher than in the non-infectious group and infectious group. This can be used as a potential diagnostic biomarker for diarrhea.

The Effect of Enzyme/Microbial Additive on Anaerobic Digestion of Primary Sludge

  • Kim, Hyung-Jin;Song, Chang-Soo;Kim, Dong-Wook;Pagilla, Kishna-R.
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_1
    • /
    • pp.35-40
    • /
    • 2001
  • Effect of the addition of an enzyme/microbial additive(EMA) to enhance anaerobic digestion of the primary sludge was investigated. Two laboratory scale anaerobic digester were operated with primary sludge taken from a municipal wastewater treatment plant. The digester receiving EMA with the sludge feed performed better than the control digester, when both were operated at 10-days and 15-days Solid Retention Time(SRT). Addition of EMA to the experimental digester provided 7%(10-days SRT) and 16%(15-days SRT) higher gas production compared to the control digester when both were fed with the same amount of volatile solids. The reduction in volatile solids was 24% better in the experimental digester compared to the control ar 10-days SRT, and the improvement 10% at 15-day SRT. Improvement in COD reduction, and fecal coliform density reduction were also seen in the experimental digester due to EMA addition compared to the control both ar 10-days SRT and 15-day SRT operation. Preliminary cost benefit analysis for a wastewater treatment plant showed that approximately $115/day in gas production improvements can be realized upon addition of EMA to primary sludge anaerobic digesters operating at 10-day SRT. The value of increased gas production was $172/day if the same digesters are operated with EMA addition at 15-day SRT.

  • PDF

Gut Microbiome Alterations and Functional Prediction in Chronic Spontaneous Urticaria Patients

  • Zhang, Xinyue;Zhang, Jun;Chu, Zhaowei;Shi, Linjing;Geng, Songmei;Guo, Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.747-755
    • /
    • 2021
  • The effects of the gut microbiome on both allergy and autoimmunity in dermatological diseases have been indicated in several recent studies. Chronic spontaneous urticaria (CSU) is a disease involving allergy and autoimmunity, and there is no report detailing the role of microbiota alterations in its development. This study was performed to identify the fecal microbial composition of CSU patients and investigate the different compositions and potential genetic functions on the fecal microbiota between CSU patients and normal controls. The gut microbiota of CSU patients and healthy individuals were obtained by 16s rRNA massive sequencing. Gut microbiota diversity and composition were compared, and bioinformatics analysis of the differences was performed. The gut microbiota composition results showed that Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia were dominant microbiota in CSU patients. The differential analysis showed that relative abundance of the Proteobacteria (p = 0.03), Bacilli (p = 0.04), Enterobacterales (p = 0.03), Enterobacteriaceae (p = 0.03) was significantly increased in CSU patients. In contrast, the relative abundance of Megamonas, Megasphaera, and Dialister (all p < 0.05) in these patients significantly decreased compared with healthy controls. The different microbiological compositions impacted normal gastrointestinal functions based on function prediction, resulting in abnormal pathways, including transport and metabolism. We found CSU patients exhibited gut microbiota dysbiosis compared with healthy controls. Our results indicated CSU is associated with gut microbiota dysbiosis and pointed out that the bacterial taxa increased in CSU patients, which might be involved in the pathogenesis of CSU. These results provided clues for future microbial-based therapies on CSU.