• Title/Summary/Keyword: feature projection

Search Result 217, Processing Time 0.023 seconds

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

Leision Detection in Chest X-ray Images based on Coreset of Patch Feature (패치 특징 코어세트 기반의 흉부 X-Ray 영상에서의 병변 유무 감지)

  • Kim, Hyun-bin;Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.35-45
    • /
    • 2022
  • Even in recent years, treatment of first-aid patients is still often delayed due to a shortage of medical resources in marginalized areas. Research on automating the analysis of medical data to solve the problems of inaccessibility for medical services and shortage of medical personnel is ongoing. Computer vision-based medical inspection automation requires a lot of cost in data collection and labeling for training purposes. These problems stand out in the works of classifying lesion that are rare, or pathological features and pathogenesis that are difficult to clearly define visually. Anomaly detection is attracting as a method that can significantly reduce the cost of data collection by adopting an unsupervised learning strategy. In this paper, we propose methods for detecting abnormal images on chest X-RAY images as follows based on existing anomaly detection techniques. (1) Normalize the brightness range of medical images resampled as optimal resolution. (2) Some feature vectors with high representative power are selected in set of patch features extracted as intermediate-level from lesion-free images. (3) Measure the difference from the feature vectors of lesion-free data selected based on the nearest neighbor search algorithm. The proposed system can simultaneously perform anomaly classification and localization for each image. In this paper, the anomaly detection performance of the proposed system for chest X-RAY images of PA projection is measured and presented by detailed conditions. We demonstrate effect of anomaly detection for medical images by showing 0.705 classification AUROC for random subset extracted from the PadChest dataset. The proposed system can be usefully used to improve the clinical diagnosis workflow of medical institutions, and can effectively support early diagnosis in medically poor area.

Segmentation and Visualization of Human Anatomy using Medical Imagery (의료영상을 이용한 인체장기의 분할 및 시각화)

  • Lee, Joon-Ku;Kim, Yang-Mo;Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.191-197
    • /
    • 2013
  • Conventional CT and MRI scans produce cross-section slices of body that are viewed sequentially by radiologists who must imagine or extrapolate from these views what the 3 dimensional anatomy should be. By using sophisticated algorithm and high performance computing, these cross-sections may be rendered as direct 3D representations of human anatomy. The 2D medical image analysis forced to use time-consuming, subjective, error-prone manual techniques, such as slice tracing and region painting, for extracting regions of interest. To overcome the drawbacks of 2D medical image analysis, combining with medical image processing, 3D visualization is essential for extracting anatomical structures and making measurements. We used the gray-level thresholding, region growing, contour following, deformable model to segment human organ and used the feature vectors from texture analysis to detect harmful cancer. We used the perspective projection and marching cube algorithm to render the surface from volumetric MR and CT image data. The 3D visualization of human anatomy and segmented human organ provides valuable benefits for radiation treatment planning, surgical planning, surgery simulation, image guided surgery and interventional imaging applications.

Online Multi-view Range Image Registration using Geometric and Photometric Feature Tracking (3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합)

  • Baek, Jae-Won;Moon, Jae-Kyoung;Park, Soon-Yong
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.493-502
    • /
    • 2007
  • An on-line registration technique is presented to register multi-view range images for the 3D reconstruction of real objects. Using a range camera, we first acquire range images and photometric images continuously. In the range images, we divide object and background regions using a predefined threshold value. For the coarse registration of the range images, the centroid of the images are used. After refining the registration of range images using a projection-based technique, we use a modified KLT(Kanade-Lucas-Tomasi) tracker to match photometric features in the object images. Using the modified KLT tracker, we can track image features fast and accurately. If a range image fails to register, we acquire new range images and try to register them continuously until the registration process resumes. After enough range images are registered, they are integrated into a 3D model in offline step. Experimental results and error analysis show that the proposed method can be used to reconstruct 3D model very fast and accurately.

3D Precision Measurement of Scanning Moire Using Line Scan Camera (라인스캔 카메라를 이용한 3차원 정밀 측정)

  • Kim, Hyun-Ju;Yoon, Doo-Hyun;Kim, Hak-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.376-380
    • /
    • 2008
  • This paper presents the Projection Moire method using a line scan camera. The high resolution feature of a line scan camera makes it possible to scan an image quickly, thus enabling a much quicker 3D profile. This method uses a high resolution line scan camera making it possible to scan an image at high speed simultaneously measuring the 3D profile of a large FOV. When using a high resolution scan camera, a full FOV is scanned, thus requiring just one movement of a projection grating. As a result, the number of grating movements is reduced drastically. The end result is a faster and more accurate 3D measurement. Moving the grating too quickly causes vibration in the imaging system, which will normally be required to apply a stitching technique when using an area scan camera. However the technique is not required when using a line scan camera. Compared with the previous techniques, it has the advantages of simple hardware without moving mechanical parts - single exposure for obtaining three-dimensional information. A method using a high resolution line scan camera can be used in mass production to measure the bump height of wafers or the bump height of package substrates.

The Interesting Moving Objects Tracking Algorithm using Color Informations on Multi-Video Camera (다중 비디오카메라에서 색 정보를 이용한 특정 이동물체 추적 알고리듬)

  • Shin, Chang-Hoon;Lee, Joo-Shin
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.267-274
    • /
    • 2004
  • In this paper, the interesting moving objects tracking algorithm using color information on Multi-Video camera is proposed Moving objects are detected by using difference image method and integral projection method to background image and objects image only with hue area, after converting RGB color coordination of image which is input from multi-video camera into HSI color coordination. Hue information of the detected moving area are normalized by 24 steps from 0$^{\circ}$ to 360$^{\circ}$ It is used for the feature parameters of the moving objects that three normalization levels with the highest distribution and distance among three normalization levels after obtaining a hue distribution chart of the normalized moving objects. Moving objects identity among four cameras is distinguished with distribution of three normalization levels and distance among three normalization levels, and then the moving objects are tracked and surveilled. To examine propriety of the proposed method, four cameras are set up indoor difference places, humans are targeted for moving objects. As surveillance results of the interesting human, hue distribution chart variation of the detected Interesting human at each camera in under 10%, and it is confirmed that the interesting human is tracked and surveilled by using feature parameters at four cameras, automatically.

Building Dataset of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Junhyuk Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.21-30
    • /
    • 2024
  • In this paper, we propose a method to build a sample dataset of the features of eight sensor-only facilities built as infrastructure for autonomous cooperative driving. The feature extracted from point cloud data acquired by LiDAR and build them into the sample dataset for recognizing the facilities. In order to build the dataset, eight sensor-only facilities with high-brightness reflector sheets and a sensor acquisition system were developed. To extract the features of facilities located within a certain measurement distance from the acquired point cloud data, a cylindrical projection method was applied to the extracted points after applying DBSCAN method for points and then a modified OTSU method for reflected intensity. Coordinates of 3D points, projected coordinates of 2D, and reflection intensity were set as the features of the facility, and the dataset was built along with labels. In order to check the effectiveness of the facility dataset built based on LiDAR data, a common CNN model was selected and tested after training, showing an accuracy of about 90% or more, confirming the possibility of facility recognition. Through continuous experiments, we will improve the feature extraction algorithm for building the proposed dataset and improve its performance, and develop a dedicated model for recognizing sensor-only facilities for autonomous cooperative driving.

Evaluation of Firmness and Sweetness Index of Tomatoes using Hyperspectral Imaging

  • Rahman, Anisur;Faqeerzada, Mohammad Akbar;Joshi, Rahul;Cho, Byoung-Kwan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.44-44
    • /
    • 2017
  • The objective of this study was to evaluate firmness, and sweetness index (SI) of tomatoes (Lycopersicum esculentum) by using hyperspectral imaging (HSI) in the range of 1000-1400 nm. The mean spectra of the 95 matured tomato samples were extracted from the hyperspectral images, and the reference firmness and sweetness index of the same sample were measured and calibrated with their corresponding spectral data by partial least squares (PLS) regression with different preprocessing method. The results showed that the regression model developed by PLS regression based on Savitzky-Golay (S-G) second-derivative preprocessed spectra resulted in better performance for firmness, and SI of tomatoes compared to models developed by other preprocessing methods, with correlation coefficients (rpred) of 0.82, and 0.74 with standard error of prediction (SEP) of 0.86 N, and 0.63 respectively. Then, the feature wavelengths were identified using model-based variable selection method, i.e., variable important in projection (VIP), resulting from the PLS regression analyses and finally chemical images were derived by applying the respective regression coefficient on the spectral image in a pixel-wise manner. The resulting chemical images provided detailed information on firmness, and sweetness index (SI) of tomatoes. Therefore, these research demonstrated that HIS technique has a potential for rapid and non-destructive evaluation of the firmness and sweetness index of tomatoes.

  • PDF

Generation of 3-Dimensional Landscape Map from Aerial Photos (항공사진을 이용한 3차원 경관도 제작)

  • Yeu, Bock-Mo;Jeong, Soo;Kim, Won-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.1 s.5
    • /
    • pp.105-113
    • /
    • 1995
  • Three-dimensional landscape map is very useful in terrain analysis as it looks like real shape of terrain. When three-dimensional landscape map is needed, landscape photos achieved at a position of high elevation or by airplane are generally used. But, this approach can not fully satisfy the user's need to get pictures from various view points. In addition, because photos have some geometric displacement caused by the principle of central projection of camera, it is hard to get accurate locations from the photo. This paper aims to get three-dimensional landscape map similar to real terrain feature from vertical stereo aerial photos by digital photogrammetric techniques. This approach can provide a very useful data for three-dimensional terrain analysis as a function of Geo-Spatial Information System.

  • PDF

Performance Comparison of Various Features for Off-line Handwritten Numerals Recognition and Suggestions for Improving Recognition Rate (오프라인 필기체 슷자 인식을 위한 다양한 특징들의 성능 비교 및 인식률 개선 방안)

  • Park, Chang-Sun;Kim, Du-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.915-925
    • /
    • 1996
  • In this paper, in order to find effective features which can handle variations in off-line handwritten numerals, we performed a comparative study on various sets of features. Results of experimental performance comparison shows that 4- directional features using contours and features which combined cross distance, cross, mesh and projection features are very effective for off-line handwritten numerals recognition in terms of recognition rates and recognition time. And in order to surmount limitation of recognition rate by a single neural network. we proposed a modularized neural network using majority voting and reliability factor with complex feature that mix effective features together. In order to verify the performance of the proposed method, the handwritten numeral databases of Concordia University of Canada and Dong-A University of Korea are used in the experiments. With the database of Concordia University, the recognition rate of 97.1%, the rejection rate of 1.5%, the error rate of 1.4% and the reliability of 98.5% are obtained ; and with the database of Dong-A University, there cognition rate of 98%, the rejection rate of 1.2%, the error rate of 0.8%, the reliability o99.1% are obtained.

  • PDF