• Title/Summary/Keyword: feature projection

Search Result 217, Processing Time 0.028 seconds

Face Recognition Robust to Local Distortion using Modified ICA Basis Images (개선된 ICA 기저영상을 이용한 국부적 왜곡에 강인한 얼굴인식)

  • Kim Jong-Sun;Yi June-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.5
    • /
    • pp.481-488
    • /
    • 2006
  • The performance of face recognition methods using subspace projection is directly related to the characteristics of their basis images, especially in the cases of local distortion or partial occlusion. In order for a subspace projection method to be robust to local distortion and partial occlusion, the basis images generated by the method should exhibit a part-based local representation. We propose an effective part-based local representation method named locally salient ICA (LS-ICA) method for face recognition that is robust to local distortion and partial occlusion. The LS-ICA method only employs locally salient information from important facial parts in order to maximize the benefit of applying the idea of 'recognition by parts.' It creates part-based local basis images by imposing additional localization constraint in the process of computing ICA architecture I basis images. We have contrasted the LS-ICA method with other part-based representations such as LNMF (Localized Non-negative Matrix Factorization) and LFA (Local Feature Analysis). Experimental results show that the LS-ICA method performs better than PCA, ICA architecture I, ICA architectureII, LFA, and LNMF methods, especially in the cases of partial occlusions and local distortions.

Comparison of Feature Performance in Off-line Hanwritten Korean Alphabet Recognition (오프라인 필기체 한글 자소 인식에 있어서 특징성능의 비교)

  • Ko, Tae-Seog;Kim, Jong-Ryeol;Chung, Kyu-Sik
    • Korean Journal of Cognitive Science
    • /
    • v.7 no.1
    • /
    • pp.57-74
    • /
    • 1996
  • This paper presents a comparison of recognition performance of the features used inthe recent handwritten korean character recognition.This research aims at providing the basis for feature selecion in order to improve not only the recognition rate but also the efficiency of recognition system.For the comparison of feature performace,we analyzed the characteristics of theose features and then,classified them into three rypes:global feature(image transformation)type,statistical feature type,and local/ topological feature type.For each type,we selected four or five features which seem more suitable to represent the characteristics of korean alphabet,and performed recongition experiments for the first consonant,horizontal vowel,and vertical vowel of a korean character, respectively.The classifier used in our experiments is a multi-layered perceptron with one hidden layer which is trained with backpropagation algorithm.The training and test data in the experiment are taken from 30sets of PE92. Experimental results show that 1)local/topological features outperform the other two type features in terms of recognition rates 2)mesh and projection features in statical feature type,walsh and DCT features in global feature type,and gradient and concavity features in local/topological feature type outperform the others in each type, respectively.

  • PDF

Face Recognition based on Hybrid Classifiers with Virtual Samples (가상 데이터와 융합 분류기에 기반한 얼굴인식)

  • 류연식;오세영
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • This paper presents a novel hybrid classifier for face recognition with artificially generated virtual training samples. We utilize both the nearest neighbor approach in feature angle space and a connectionist model to obtain a synergy effect by combining the results of two heterogeneous classifiers. First, a classifier called the nearest feature angle (NFA), based on angular information, finds the most similar feature to the query from a given training set. Second, a classifier has been developed based on the recall of stored frontal projection of the query feature. It uses a frontal recall network (FRN) that finds the most similar frontal one among the stored frontal feature set. For FRN, we used an ensemble neural network consisting of multiple multiplayer perceptrons (MLPs), each of which is trained independently to enhance generalization capability. Further, both classifiers used the virtual training set generated adaptively, according to the spatial distribution of each person's training samples. Finally, the results of the two classifiers are combined to comprise the best matching class, and a corresponding similarit measure is used to make the final decision. The proposed classifier achieved an average classification rate of 96.33% against a large group of different test sets of images, and its average error rate is 61.5% that of the nearest feature line (NFL) method, and achieves a more robust classification performance.

The Efficient Feature Extraction of Handwritten Numerals in GLVQ Clustering Network (GLVQ클러스터링을 위한 필기체 숫자의 효율적인 특징 추출 방법)

  • Jeon, Jong-Won;Min, Jun-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.995-1001
    • /
    • 1995
  • The structure of a typical pattern recognition consists a pre-processing, a feature extraction(algorithm) and classification or recognition. In classification, when widely varying patterns exist in same category, we need the clustering which organize the similar patterns. Clustering algorithm is two approaches. Firs, statistical approaches which are k-means, ISODATA algorithm. Second, neural network approach which is T. Kohonen's LVQ(Learning Vector Quantization). Nikhil R. Palet al proposed the GLVQ(Generalized LVQ, 1993). This paper suggest the efficient feature extraction methods of handwritten numerals in GLVQ clustering network. We use the handwritten numeral data from 21's authors(ie, 200 patterns) and compare the proportion of misclassified patterns for each feature extraction methods. As results, when we use the projection combination method, the classification ratio is 98.5%.

  • PDF

A study on the lip shape recognition algorithm using 3-D Model (3차원 모델을 이용한 입모양 인식 알고리즘에 관한 연구)

  • 김동수;남기환;한준희;배철수;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.181-185
    • /
    • 1998
  • Recently, research and developmental direction of communication system is concurrent adopting voice data and face image in speaking to provide more higher recognition rate then in the case of only voice data. Therefore, we present a method of lipreading in speech image sequence by using the 3-D facial shape model. The method use a feature information of the face image such as the opening-level of lip, the movement of jaw, and the projection height of lip. At first, we adjust the 3-D face model to speeching face image sequence. Then, to get a feature information we compute variance quantity from adjusted 3-D shape model of image sequence and use the variance quality of the adjusted 3-D model as recognition parameters. We use the intensity inclination values which obtaining from the variance in 3-D feature points as the separation of recognition units from the sequential image. After then, we use discrete HMM algorithm at recognition process, depending on multiple observation sequence which considers the variance of 3-D feature point fully. As a result of recognition experiment with the 8 Korean vowels and 2 Korean consonants, we have about 80% of recognition rate for the plosives and vowels.

  • PDF

A Vehicle License Plate Recognition Using the Feature Vectors based on Mesh and Thinning (메쉬 및 세선화 기반 특징 벡터를 이용한 차량 번호판 인식)

  • Park, Seung-Hyun;Cho, Seong-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.705-711
    • /
    • 2011
  • This paper proposes an effective algorithm of license plate recognition for industrial applications. By applying Canny edge detection on a vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are compared with the pre-learned weighting values by backpropagation neural network to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.

A study on the lip shape recognition algorithm using 3-D Model (3차원 모델을 이용한 입모양 인식 알고리즘에 관한 연구)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.783-788
    • /
    • 2002
  • Recently, research and developmental direction of communication system is concurrent adopting voice data and face image in speaking to provide more higher recognition rate then in the case of only voice data. Therefore, we present a method of lipreading in speech image sequence by using the 3-D facial shape model. The method use a feature information of the face image such as the opening-level of lip, the movement of jaw, and the projection height of lip. At first, we adjust the 3-D face model to speeching face Image sequence. Then, to get a feature information we compute variance quantity from adjusted 3-D shape model of image sequence and use the variance quality of the adjusted 3-D model as recognition parameters. We use the intensity inclination values which obtaining from the variance in 3-D feature points as the separation of recognition units from the sequential image. After then, we use discrete HMM algorithm at recognition process, depending on multiple observation sequence which considers the variance of 3-D feature point fully. As a result of recognition experiment with the 8 Korean vowels and 2 Korean consonants, we have about 80% of recognition rate for the plosives md vowels.

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.

Geometric Correction of Vehicle Fish-eye Lens Images (차량용 어안렌즈영상의 기하학적 왜곡 보정)

  • Kim, Sung-Hee;Cho, Young-Ju;Son, Jin-Woo;Lee, Joong-Ryoul;Kim, Myoung-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.601-605
    • /
    • 2009
  • Due to the fact that fish-eye lens can provide super wide angles with the minimum number of cameras, field-of-view over 180 degrees, many vehicles are attempting to mount the camera system. Camera calibration should be preceded, and geometrical correction on the radial distortion is needed to provide the images for the driver's assistance. However, vehicle fish-eye cameras have diagonal output images rather than circular images and have asymmetric distortion beyond the horizontal angle. In this paper, we introduce a camera model and metric calibration method for vehicle cameras which uses feature points of the image. And undistort the input image through a perspective projection, where straight lines should appear straight. The method fitted vehicle fish-eye lens with different field of views.

  • PDF

Spatial-temporal texture features for 3D human activity recognition using laser-based RGB-D videos

  • Ming, Yue;Wang, Guangchao;Hong, Xiaopeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1595-1613
    • /
    • 2017
  • The IR camera and laser-based IR projector provide an effective solution for real-time collection of moving targets in RGB-D videos. Different from the traditional RGB videos, the captured depth videos are not affected by the illumination variation. In this paper, we propose a novel feature extraction framework to describe human activities based on the above optical video capturing method, namely spatial-temporal texture features for 3D human activity recognition. Spatial-temporal texture feature with depth information is insensitive to illumination and occlusions, and efficient for fine-motion description. The framework of our proposed algorithm begins with video acquisition based on laser projection, video preprocessing with visual background extraction and obtains spatial-temporal key images. Then, the texture features encoded from key images are used to generate discriminative features for human activity information. The experimental results based on the different databases and practical scenarios demonstrate the effectiveness of our proposed algorithm for the large-scale data sets.