• Title/Summary/Keyword: feature models

Search Result 1,096, Processing Time 0.034 seconds

A mechanism for Converting BPMN model into Feature model based on syntax (구조 기반 BPMN 모델의 Feature 모델로 변환 기법)

  • Song, Chee-Yang;Kim, Chul-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.733-744
    • /
    • 2016
  • The legacy methods for converting a business model to a feature model make it difficult to support an automatic transformation due to a dependence on a domain analyzers' intuitions, which hinders the feature oriented development for the integration of feature modeling in business modeling. This paper proposes a method for converting a BPMN business model into a feature model based on syntax. To allow the conversion between the heterogeneous models from BPMN to the FM(Feature Model), it defines the grouping mechanism based activities' syntax, and then makes translation rules and a method based on the element (represent business function) and structure (relationships and process among elements), which are common constructs of their models. This method was applied to an online shopping mall system as a case study. With this mechanism, it will help develop a mechanical or automated structure transformation from the BPMN model to the FM.

A study on Knowledge based-processing of information to shape cutting (형상 가공 정보의 지식 베이스 처리에 관한 연구)

  • 김희중;조우승;정재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.970-973
    • /
    • 1995
  • The proposal of this paper is the constructing of knowledge database with manufacturing information. This database contains characteristics of workpiece materials, cutting tools, NC machines, manufacturing processes, and work conditions. And all shape in the system are feature models such base plate, step, hole, pocket, boss, and slot. These information generate a final decision for machining process by the expert system.

  • PDF

Clustering based object feature matching for multi-camera system (멀티 카메라 연동을 위한 군집화 기반의 객체 특징 정합)

  • Kim, Hyun-Soo;Kim, Gyeong-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.915-916
    • /
    • 2008
  • We propose a clustering based object feature matching for identification of same object in multi-camera system. The method is focused on ease to system initialization and extension. Clustering is used to estimate parameters of Gaussian mixture models of objects. A similarity measure between models are determined by Kullback-Leibler divergence. This method can be applied to occlusion problem in tracking.

  • PDF

A study of methodology for identification models of cardiovascular diseases based on data mining (데이터마이닝을 이용한 심혈관질환 판별 모델 방법론 연구)

  • Lee, Bum Ju
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.339-345
    • /
    • 2022
  • Cardiovascular diseases is one of the leading causes of death in the world. The objectives of this study were to build various models using sociodemographic variables based on three variable selection methods and seven machine learning algorithms for the identification of hypertension and dyslipidemia and to evaluate predictive powers of the models. In experiments based on full variables and correlation-based feature subset selection methods, our results showed that performance of models using naive Bayes was better than those of models using other machine learning algorithms in both two diseases. In wrapper-based feature subset selection method, performance of models using logistic regression was higher than those of models using other algorithms. Our finding may provide basic data for public health and machine learning fields.

3D Model Retrieval Based on Orthogonal Projections

  • Wei, Liu;Yuanjun, He
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.117-123
    • /
    • 2006
  • Recently with the development of 3D modeling and digitizing tools, more and more models have been created, which leads to the necessity of the technique of 3D mode retrieval system. In this paper we investigate a new method for 3D model retrieval based on orthogonal projections. We assume that 3D models are composed of trigonal meshes. Algorithms process first by a normalization step in which the 3D models are transformed into the canonical coordinates. Then each model is orthogonally projected onto six surfaces of the projected cube which contains it. A following step is feature extraction of the projected images which is done by Moment Invariants and Polar Radius Fourier Transform. The feature vector of each 3D model is composed of the features extracted from projected images with different weights. Our System validates that this means can distinguish 3D models effectively. Experiments show that our method performs quit well.

Short Note on Optimizing Feature Selection to Improve Medical Diagnosis

  • Guo, Cui;Ryoo, Hong Seo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.4
    • /
    • pp.71-74
    • /
    • 2014
  • A new classification framework called 'support feature machine' was introduced in [2] for analyzing medical data. Contrary to authors' claim, however, the proposed method is not designed to guarantee minimizing the use of the spatial feature variables. This paper mathematically remedies this drawback and provides comments on models from [2].

A Survey of Feature-based Multiresolution Modeling Techniques (특징형상기반 다중해상도 모델링 기법에 관한 연구)

  • Lee, Sang-Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.137-149
    • /
    • 2009
  • For recent years, there has been significant research achievement on the feature-based multiresolution modeling technique along with widely application of three-dimensional feature-based CAD system in the areas of design, analysis, and manufacturing. The research has focused on several topics: topological frameworks for representing multiresolution solid model, criteria for the LOD, generation of valid models after rearrangement of features, and applications. This paper surveys the relevant research on these topics and suggests the future work for dissemination of this technology.

Feature-Based Non-manifold Geometric Modeling System to Provide Integrated Environment for Design and Analysis of Injection Molding Products (사출 성형 제품의 설계 및 해석의 통합 환경을 제공하기 위한 특징 형상 기반 비다양체 모델링 시스템의 개발)

  • 이상헌;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.133-149
    • /
    • 1996
  • In order to reduce the trial-and-errors in design and production of injection molded plastic parts, there has been much research effort not only on CAE systems which simulate the injection molding process, but also on CAD systems which support initial design and re-design of plastic parts and their molds. The CAD systems and CAE systems have been developed independently with being built on different basis. That is, CAD systems manipulate the part shapes and the design features in a complete solid model, while CAE systems work on shell meshes generated on the abstract sheet model or medial surface of the part. Therefore, it is required to support the two types of geometric models and feature information in one environment to integrate CAD and CAE systems for accelerating the design speed. A feature-based non-manifold geometric modeling system has been developed to provide an integrated environment for design and analysis of injection molding products. In this system, the geometric models for CAD and CAE systems are represented by a non-manifold boundary representation and they are merged into a single geometric model. The suitable form of geometric model for any application can be extracted from this model. In addition, the feature deletion and interaction problem of the feature-based design system has been solved clearly by introducing the non-manifold Boolean operation based on 'merge and selection' algorithm. The sheet modeling capabilities were also developed for easy modeling of thin plastic parts.

  • PDF

Integrated Object Representations in Visual Working Memory Examined by Change Detection and Recall Task Performance (변화탐지와 회상 과제에 기초한 시각작업기억의 통합적 객체 표상 검증)

  • Inae Lee;Joo-Seok Hyun
    • Korean Journal of Cognitive Science
    • /
    • v.35 no.1
    • /
    • pp.1-21
    • /
    • 2024
  • This study investigates the characteristics of visual working memory (VWM) representations by examining two theoretical models: the integrated-object and the parallel-independent feature storage models. Experiment I involved a change detection task where participants memorized arrays of either orientation bars, colored squares, or both. In the one-feature condition, the memory array consisted of one feature (either orientations or colors), whereas the two-feature condition included both. We found no differences in change detection performance between the conditions, favoring the integrated object model over the parallel-independent feature storage model. Experiment II employed a recall task with memory arrays of isosceles triangles' orientations, colored squares, or both, and one-feature and two-feature conditions were compared for their recall performance. We found again no clear difference in recall accuracy between the conditions, but the results of analyses for memory precision and guessing responses indicated the weak object model over the strong object model. For ongoing debates surrounding VWM's representational characteristics, these findings highlight the dominance of the integrated object model over the parallel independent feature storage model.

Feature Selection Effect of Classification Tree Using Feature Importance : Case of Credit Card Customer Churn Prediction (특성중요도를 활용한 분류나무의 입력특성 선택효과 : 신용카드 고객이탈 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis, a model can be constructed with various machine learning algorithms, including decision tree. And feature importance has been utilized in selecting better input features that can improve performance of data analysis models for several application areas. In this paper, a method of utilizing feature importance calculated from the MDI method and its effects are investigated in the credit card customer churn prediction problem with classification trees. Compared with several random feature selections from case data, a set of input features selected from higher value of feature importance shows higher predictive power. It can be an efficient method for classifying and choosing input features necessary for improving prediction performance. The method organized in this paper can be an alternative to the selection of input features using feature importance in composing and using classification trees, including credit card customer churn prediction.