• 제목/요약/키워드: fault material

Search Result 359, Processing Time 0.029 seconds

Variations of Initial Fault Current Limiting Instant According to Fault Angles in the Flux-lock Type SFCL (자속 구속형 전류제한기의 사고각에 따른 초기 사고전류 제한 시점 변화분석)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.61-64
    • /
    • 2004
  • In this paper, we investigated the variations of initial fault current limiting instant according to fault angles in the flux-lock type SFCL. The flux-lock type SFCL consists of the coil 1 and the coil 2 that are wound in parallel each other through an iron core. The operation of the flux-lock type SFCL can be divided into the subtractive polarity winding and the additive polarity winding operations according to the winding directions between the coil 1 and coil 2. The subtractive polarity winding operation could be analyzed with three modes. On the other hand, the additive polarity winding operation could be analyzed with five modes. The variations of initial fault current limiting instant in two winding directions were dependent on the fault angles. It was confirmed from experiment that the fault current limiting instant was getting faster and the magnitude of fault current at the initial fault time was getting higher for higher fault angle.

  • PDF

Analysis of Fault Current Limiting Characteristics According to Variation of Fault Current level in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (사고전류 변화에 따른 일체화된 삼상자속구속형 고온초전도 사고전류제한기의 사고전류 제한 특성 분석)

  • Han, Byoung-Sung;Park, Chung-Ryul;Du, Ho-Ik;Choi, Hyo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.39-40
    • /
    • 2007
  • The analysis of fault current limiting characteristics according to variation of fault current level in the integrated three-phase flux-lock type superconducting fault current limiter (SFCL), which consisted of three-phase flux-lock reactor wound on an iron core with the same turn's ratio between coil 1 and coil 2 for each single phase, was performed. To analyze the current limiting characteristics of this integrated three-phase flux-lock type SFCL, the short circuit experiments was carried out the various three-phase faults such as the single line-to-ground fault, the double line-to-ground fault, the triple line-to-ground fault. From the experimental results, the fault current limiting characteristic was improved according to increase of fault current level.

  • PDF

AC Loss Characteristic in the Fault Current Limiting Elements of a Coil Type (코일형 한류소자의 교류손실 특성)

  • Ryu, Kyung-Woo;Ma, Yong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.370-374
    • /
    • 2005
  • AC loss of a superconducting conductor has a strong influence on the economic viability of a superconducting fault current limiter, which offers an attractive means to limit short circuit current in power systems. Therefore, the AC loss characteristics in several fault current limiting elements of a coil type have been investigated experimentally. The test result shows that AC losses measured in the fault current limiting elements depend on arrangement of a voltage lead. The AC loss of a bifilar coil is smallest among the fault current limiting elements of the coil type. The measured AC loss of the bifilar coil is much smaller than that calculated from Norris's elliptical model. However, the loss measured in a meander, which is frequently used in a resistive fault current limiter, agrees well to the theoretical one.

Characteristic of Magnetic Shielding Type High-Tc Superconducting Fault Current Limiter Using Magnetization Curve of Iron Core (철심의 자화곡선을 이용한 자기차폐형 고온초전도 전류제한기 특성)

  • Lee, Jae;Lim, Sung-Hun;Song, Jae-Joo;Kim, Jun-Hyuok;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.511-514
    • /
    • 2002
  • In this paper, we compared the characteristic of fault current liminting in the magnetic shielding type High-Tc superconducting fault current limiter(FCL) using both Piecewise linear magnetization curve and real magnetization one of iron core. From this paper, the characteristics of fault current limiting in both cases showed many differences. The latter has higher fault current than the former, because the saturation of iron core was reflected and more accumulated during fault. It is expected that the more exact characteristic of magnetic shielding type High-Tc superconducting FCL was obtained in the case of design and modeling.

  • PDF

Analysis on Fault Current Limiting Characteristics of Flux-Lock Type SFCL Using Magnetic Flux Application Circuit (자기인가회로를 이용한 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Go, Ju-Chan;Lim, Seung-Taek;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.37-41
    • /
    • 2017
  • In this paper, the fault current limiting characteristics of the flux-lock type SFCL (superconducting fault current limiter) using magnetic application circuit were analyzed. The flux-lock type SFCL has the structure to install the magnetic application circuit, which can increase the resistance of HTSC ($high-T_C$ superconducting element comprising) the SFCL. To analyze the fault current limiting effect of the flux-lock type SFCL through the magnetic flux application circuit, the flux-lock type SFCL either with the magnetic flux circuit or without the magnetic flux circuit was constructed and the fault current limiting characteristics of the SFCL were compared each other through the short-circuit tests.

Operating properties of the resistive and inductive SFCL with the three-phase fault (3상 단락사고에 대한 저항형과 유도형 한류기의 동작특성)

  • 최효상;현옥배;김상준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.209-212
    • /
    • 1999
  • We studied the operating properties of resistive and inductive SFCLS with 100 $\Omega$ of quench impedance for a three-phase-fault in the 154 kV transmission system. The fault simulation at the phase angles 0$^{\circ}$ , 45$^{\circ}$ , and 90$^{\circ}$ showed that the resistive SFCL limited the fault current less than 16 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppressed the current below 11 kA, but with 3-4 kA of DC component which decreased to zero in 5 cycles. We concluded that the inductive SFCL had higher performance in current limiting but the resistive SFCL was better from the view point of DC components.

  • PDF

A Study on Feature Extraction of Fault Signal for Stator Winding using Epoxy/Mica Coupler (에폭시/마이카 커플러를 이용한 고정자권선 결함신호 특징추출에 관한연구)

  • Park, Jae-Jun;Kim, Hee-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.225-226
    • /
    • 2005
  • In this Study, we have acquired 5-simulation Fault types Signals of high voltage Motor stator winding using epoxy/mica coupler. In order to know stator winding fault type using fault signals, we have performed feature extraction to apply wavelet transform technique. we have obtained skewness and kurtosis as statistical parameters of fault signal pattern from non deterioration state winding. We have know that 5 fault signals types have done an exponential function pattern shape but individually fault a class widely was different each other a signal waveform of pattern.

  • PDF

A Novel Hybrid Fault Location Sensor Employable to the Power Transmission Systems (가공 송전선의 사고 및 낙뢰 검출을 위한 새로운 하이브리드 센서)

  • Chang, Yong-Moo;Kang, Moo-Sung;Hwang, Ryul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.583-584
    • /
    • 2005
  • In this work, a novel hybrid FL sensor consisting of two Rogowski coils has been designed for the installation on the ground wire of the transmission tower. The operation range of these coils is as follows: 30kA for the fault current comingfrom the ground fault or short-circuit and for the lightning current up to 150kA over 500kHz. Thus, two important functions could be provided: one is to detect the fault current and the other one is to find the fault location between towers or the location of induced lightning stroke. The on-site investigation at 800kV test yard has been under progress for its on-site application.

  • PDF

Current Limiting Characteristics of flux-lock Type High-lc Superconducting Fault Current Limiter According to fault Angles (사고각에 따른 자속구속형 전류제한기의 전류제한특성)

  • Park, Hyoung-Min;Choi, Hyo-Sang;Cho, Yong-Sun;Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.747-753
    • /
    • 2005
  • We Investigated the current limiting characteristics of the flux-lock type superconducting fault current limiter(SFCL) by fault angles. The flux-lock type SFCL consists of the primary and the secondary copper coils wound in parallel through the iron core and YBCO thin film. In this paper, the current limiting characteristics of the flux-lock type SFCL by fault angles in case of the subtractive and the additive polarity windings were compared and analyzed. The flux-lock type SFCL limited fault current more quickly as the fault angles increased. On the other hand, the initial power burden of the superconducting element during the fault increased as the fault angles increased. In addition, we found that the resistance of the flux-lock type SFCL in case of the subtractive polarity winding was more increased than that of the additive polarity winding. The peak current of the fault current in case of the subtractive polarity winding was larger than that of the additive polarity winding.

Analysis on Current Limiting Characteristics of a Superconducting Fault Current Limiter (SFCL) with a Peak Currnt Limiting Function (피크전류제한 기능을 갖는 초전도한류기의 전류제한 특성분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.47-51
    • /
    • 2011
  • The superconducting fault current limiter (SFCL) with a peak current limiting function according to the initial fault current with the different amplitudes was suggested. The proposed SFCL, which consists of two limiting components, causes only the first superconducting element among two limiting components to be quenched in case that the initial fault current with the lower peak amplitude happens. On the other hand, the initial fault current with the higher peak amplitude makes both the superconducting elements of two limiting components to be quenched, which contributes to the peak current limiting function of the SFCL. To confirm the fault current limiting operation of the proposed SFCL, the short-circuit tests of the SFCL according to the fault angle were carried out and its effective fault current limiting operations could be discussed.