• Title/Summary/Keyword: fault area

Search Result 802, Processing Time 0.026 seconds

Resistivity Exploration of Submarine Groundwater Discharge in Busan Area (부산지역의 해저용출수 전기비저항탐사)

  • Park, Jun-Kyu;Kim, Sung-Wook;Lee, Jin-Hyuk;Kim, In-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.711-716
    • /
    • 2010
  • This study selected the promising area of submarine groundwater discharge(SGD) that flows into the sea following unconfined physical aquifer through the electrical resistivity survey of the land and sea. The submarine groundwater discharge(SGD) mostly flows into the sea following fracture zones, and the detection of the fault zone becomes the important guideline of groundwater discharge. Electrical sounding of the land assessed the groundwater flow and integration possibility according to the location of a fault that is a water path between underground reservoir and surface water as well as a rock fracture. In addition, the study conducted sea electrical resistivity to expand the area with high potential and selected the expected water potential groundwater area. The areas of the study were Busan and coastal areas, and for the terrain analysis, the candidates of the ground exploration were selected after analyzing lineaments that is expanded to coast direction.

  • PDF

Brittle Deformation History Based on the Analyses of Dikes and Faults within Sedimentary Rocks on Geoje Island, SE Korea

  • Hategekimana, Francois;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.239-255
    • /
    • 2021
  • Kinematic analyses of magmatic intrusions and faults can provide useful information on stress conditions and chronological relationships between dike emplacement and brittle deformation events. We studied structures in rocks exposed on a coastal platform in Geoje Island off the southern Korean Peninsula because of its well-developed dikes and faults. The geology of the study area includes the Cretaceous Seongpo-ri Formation, which is composed mostly of shale, sandstone, and hornfels intruded by magmatic dikes. Most of the dikes are developed along pre-existing structural features (faults and fractures), indicating that their emplacements were structurally controlled. Because dikes commonly open along the direction of the minimum principal stress, the direction of this stress can be obtained from dike geometry and orientation through the matching of piercing points on either side of a dike. In addition, the deformed dikes can give information regarding later deformation. On the basis of the kinematic analyses, we identified five deformation events in the study area, which are kinematically related to changes of the regional maximum principal stress. Results indicate that the structures in the study area have been controlled predominantly by episodes of reactivation of the NNE-trending Yangsan strike-slip fault, located to the northeast of the study area, under different stress regimes. In a wider tectonic context, the brittle deformation of the rocks of Geoje Island was probably induced by interactions among the Philippine Sea, Pacific, and Eurasian plates, including changes in subduction parameters with respect to the latter two plates over time.

Geometric Characteristics of Southern Yangsan Fault Zone by Means of Geophysical Prospecting and Geological Survey (지구물리탐사와 지질조사에 의한 양산단층대 남부구간의 기하학적 특성)

  • Lee, Hyoun-Jae;Hamm, Se-Yeong;Park, Samgyu;Ryoo, Chung-Ryul
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.9-20
    • /
    • 2017
  • To date, several studies have been carried out to partially compare and analyze the resistivity values within the Yangsan fault zone through the electrical resistivity survey of the exposed fault zone. However, it is not easy to directly observe a large scaled fault like Yangsan fault that has been weathered, especially due to the weathering of the fault core. This study aimed to reveal the characteristics of location, geometry, the fault core zone as well as underground distribution of the associated fault damage zone, based on the results of electrical resistivity and micro-topographic surveys as well as field geology survey in the southern Yangsan fault zone (Eonyang area). The resistivity anomaly zones developed in the NNE to NE direction were confirmed by the electrical resistivity survey. According to the electrical resistivity, micro-topographic, and field geologic surveys, the Yangsan fault has been formed by three to five fault cores, fault damage zones and/or fractured zones.

Characteristics of Large-Scale Fault Zone and Quaternary Fault Movement in Maegok-dong, Ulsan (울산 매곡동 일대의 대규모 단층대 특성과 제4기 단층운동)

  • Cho, Jin-Hyuck;Kim, Young-Seog;Gwon, Sehyeon;Edwards, Paul;Rezaei, Sowreh;Kim, Taehyung;Lim, Soon-Bok
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.485-498
    • /
    • 2015
  • Structural analysis for a large-scale fault in Maegok-dong, Ulsan, was carried out based on filed-works to investigate the geometric and kinematic characteristics of the fault as well as its Quaternary slip. As results, a series of repeated stratigraphy, minor faults, fracture zones, and deformation band clusters are observed over a distance of about 100 m in the first studied site consisting of sedimentary rocks, which may indicate the damage zone of a large-scale fault in this site. In the second site, mainly composed of granitic clastic rocks, a large-scale thrust fault is expected based on low-angle dipping faults showing branched and/or merged patterns. Age of the last slip on this fault was restrained as after 33,275 ± 355 yr BP based on radiocarbon dating for organic material included in the gouge zone. Dimension of fault damage zone, dominant sense of slip, and age of the slip event associated with the fault suggest that these structures have a close relationship with the Ulsan Fault and/or Yeonil Tectonic Line, which are well-known large-scale neotectonic structural features around the study area. Therefore, it is necessary to study the characteristics of the faults in detail based on structural geology and paleoseismology in order to ensure seismic and geologic stability of the buildings under construction, and to prevent geologic hazards in this area.

A Study on Remote Fault Diagnosis System of Special-purposed Vehicle (특수목적용 차량의 원격 고장진단 시스템에 대한 연구)

  • Pyo, Se Young;Kim, Kee Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.221-226
    • /
    • 2018
  • Special-purposed vehicles are customized according to the user's requirements. When these vehicles are out of oder, they are costly and time consuming to repair. In order to solve these problems, we want to remotely check whether the vehicle is abnormal and remotely identify the fault area, thereby shortening the repair cost and the repair period. In this study, the faulty part of the electric control part is automatically identified, and it is immediately grasped through the user's mobile phone application and an instant fault code is notified to the car manufacturer for quick and smooth fault repair. In order to realize this, we want to build a system that uses the technology of IoT to determine the fault area according to the items required in the field of the special purpose vehicle and notify the manufacturer of the fault on its own.

Practical Construction of Tsunami Inundation Map Corresponding to Disaster Forecast/Warning Systems (지진해일 예경보에 따른 범람도의 실용적 작성)

  • Jeon, Young-Joon;Choi, Jun-Woo;Yoon, Sung-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.775-778
    • /
    • 2008
  • In general, forecast tsunami heights announced for tsunami warning are computed by using a linear tsunami model with coarse grids which leads the underestimation of inundation area. Thus, an accurate tsunami inundation map corresponding to the forecast tsunami height is indispensible for an emergency evacuation plan. A practical way to construct a relatively accurate tsunami inundation map was proposed in this study for the quantitative forecast of inundation area. This procedure can be introduced as in the followings: The fault dislocations of potential tsunami sources generating a specific tsunami height near an interested area are found by using a linear tsunami model. Based on these fault dislocations, maximum inundation envelops of the interested area are computed and illustrated by using nonlinear inundation numerical model. In this study, the tsunami inundation map for Imwon area was constructed according to 11 potential tsunami sources, and the validity of this process was examined.

  • PDF

The characteristics of quaternary fault and coastal terrace around Suryumri area. (수렴리 일대에 발달하는 신기단층 및 해안단구의 층서 고찰)

  • 이병주;감주용;양동윤;정혜정
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.133-149
    • /
    • 2000
  • The study area which contains the coastal terrace of the southeastern part of Korean peninsula, well developed the lineaments which are NNE, NE and WNW directions. The area crops out Cretaceous sedimentary rocks and granite porphyry, Tertiary conglomerate, tuffite and basalt and Quarternary deposits. Coastal terraces are subdivided into low, middle and upper terraces(LT, MT, UT) based on the topographic levels. Terrace gravels are deposited on these wave-cut erosional surface during the initial lowering stage of sea level fluctuation. Terrace gravels are typified by granule to pebble layers with slightly inclined beddings. These gravels are interpreted as beach gravels belonging to berm or swash zone based on the present distribution of beach gravels. The Suryum fault is characterized by the thrust which is gradationally changing the strike from ENE to NNE. The extension of the fault is about 200m and Maximum displacement is about 1.5m.

  • PDF

Discussions on the September 2016 Gyeongju Earthquakes (2016년 9월 경주지진 소고(小考))

  • Lee, Kiehwa
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.185-192
    • /
    • 2017
  • A sequence of earthquakes with the main shock $M_L$ 5.8 occurred on September 12 2016 in the Gyeongju area. The main shock was the largest earthquakes in the southern part of the Korean peninsula since the instrumental seismic observation began in the peninsula in 1905 and clearly demonstrated that the Yangsan fault is seismically active. The mean focal depth of the foreshock, main shock, and aftershock of the Gyeongju earthquakes estimated by the crustal model of single layer of the Korean peninsula without the Conrad discontinuity turns out to be 12.9 km, which is 2.8 km lower than that estimated based on the IASP91 reference model with the Conrad discontinuity. The distribution of the historical and instrumental earthquakes in the Gyeongju area indicates that the Yangsan fault system comprising the main Yangsan fault and its subsidiary faults is a large fracture zone. The epicenters of the Gyeongju earthquakes show that a few faults of the Yangsan fault system are involved in the release of the strain energy accumulated in the area. That the major earthquakes of Gyeongju earthquakes occurred not on the surface but below 10 km depth suggests the necessity of the study of the distribution of deep active faults of the Yangsan fault system. The magnitude of maximum earthquake of the Gyeongju area estimated based on the earthquake data of the area turns out to be 7.3. The recurrence intervals of the earthquakes over magnitudes 5.0, 6.0 and 7.0 based on the earthquake data since 1978, which is the most complete data in the peninsula, are estimated as 80, 670, and 5,900 years, respectively. The September 2016 Gyeongju earthquakes are basically intraplate earthquakes not related to the Great East Japan earthquake of March 11 2011 which is interplate earthquake.

The Fault Management of Press Dies using Web and Mobile Technologies (웹과 모바일 기술을 이용한 프레스 금형의 불량관리에 관한 연구)

  • Lee, Kang-Gul;Noh, Sang-Do;Lee, In-Seok;Song, Myeong-Hwan
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.88-93
    • /
    • 2005
  • There has been many research activities in the area of fault managements in distributed manufacturing environments. This paper proposes and implements web-based fault managements using web and mobile technologies. Web-based project document management system, web-based fault management system and web-based tryout management system are developed and adopted to the press die shop of a Korean automotive company. To do that, as-is and to-be business processes for fault managements are constructed. Because of its distributed environments of shops, necessities of using the mobile technology are proposed. New application for fault managements using WWW, wireless LAN, SMS and mobile phone are suggested and implemented in this paper. Using this system, agile, convenient and reliable way of fault management is realized, and knowledge management for the die manufacturing become possible.

The Geomorphic Analysis of the Yangsan Fault Area (梁山斷層 周邊의 地形分析)

  • Jo, Wha-Ryong
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • Yangsan Fault stretches from Yonghae to the mouth of Naktong River in the south-eastern part of Korean Peninsula. The river terraces originated from alluvial fans are classified into the High, Middle, and Low Surfaces. The High Surfaces which were distributed in fragments are considered to be formed during the Mindel/Riss Interglacial period or the former periods. But the Middle and Low Surfaces which were distributed widely are considered to be formed during the Riss and Last Glacial period respecitively. The geomorphic and geologic features around Yangsan Fault suggest that the fault is right strike-slip fault, and some geomorphic evidences of active fault were found on Eonyang and Sinkwang Basin.

  • PDF