• Title/Summary/Keyword: fatty acid biomarkers

Search Result 46, Processing Time 0.021 seconds

Hotwater Extract of Hovenia dulcis Peduncle Improves Exercise Performance and Anti-fatigue Effect in Mice (헛개나무 열매 열수추출물 투여에 의한 생쥐의 지구력 운동 수행 능력 향상 및 피로개선 효과)

  • Na, Chun-Soo;Hong, Cheol Yi;Na, Dae-Seung;Kim, Jin Beom;Yoon, Sun Young;Lee, Sang-Bum;Dong, Mi-Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.1
    • /
    • pp.83-90
    • /
    • 2013
  • The aim of this study was to evaluate the effect of hot water extract of peduncle obtained from Hovenia dulcis Thunb (HD) which is commercially developed for the protective effect on the alcoholic hepatotoxicity, on the endurance capacity for weight loaded forced swimming mice. The swimming times to exhaustion in mice fed 100 and 200 mg/kg HD for 2 weeks were prolonged 3.6 and 3.7 fold, and for 4 weeks 1.9 and 2.7 fold compared with each vehicle control ($42.8{\pm}20.5$ min and $67.7{\pm}47.8$ min, for 2 and 4 weeks), respectively. Blood biochemical parameters for ALT, AST, creatinine and BUN were not significantly different between from HD fed or control mice. Although HD fed mice swam over 2 fold longer time than vehicle control mice at 4 weeks, blood biomarkers of physical fatigue such as glucose, triglyceride and free fatty acid, lactate were not significant different and even tended to ameliorate. Hepatic lipid peroxidation and SOD activity did not significantly change in HD fed- and vehicle control exhausted swimming mice at 2 or 4 weeks. However, catalase activity in HD-fed mice was significantly increased in a dose-dependent manner compared with vehicle control mice. The present study indicates that HD improved physical fatigue and exercise performance in mice. Therefore, it has a potential for the pharmacological effect of anti-fatigue.

MODULATION OF TOXICITY AND CARCINOGENESIS BY CALORIC RESTRICTION

  • Allaben, William T.;Chou, Ming W.;Pegram, Rex A.;Leakey, Julian;Feuers, Ritchie J.;Duffy, Peter H.;Turturro, Angelo;Hart, Ronald W.
    • Toxicological Research
    • /
    • v.6 no.2
    • /
    • pp.167-182
    • /
    • 1990
  • Dietary restriction (caloric restriction) is the only intervention which has been reliably shown to extend the maximum life span of warm-blooded animals and delay the many phenomena associated with aging. It is also one of the most effective modulators of toxicity, especially cancer endpoints. In spite of the known modulator effects of caloric restriction, the biological mechanisms responsible for these effects had not been in vestigated until recently. The National Center for Toxicological Research (NCTR), in a collaborative effort with the National Institute of Aging (NIA), initiated a project whereby nine (9) combinations of rodent species/strains and diets were fed both restricted and ad libitum. The NIA's initiative was to identify biomarkers of aging whereas NCTR's initiative was to identify the biological effects associated with the profound effects caloric restriction has in protecting against both spontaneous (age-related) and chemically-induced toxic endpoints. Independent of sex or species, caloric restriction has similar effects on body temperature, oxygen consumption and $CO_2$production. Caloric restriction also decreased lipid glycolysis and metabolism in rats and mice, which suggest decreased production of metabolites which could lead to fatty acid epoxide formation. The age-associated loss of ciradian regulation of intermediate enzymes is also significantly reduced. Moreover, caloric restriction reduced the age-associated feminization of sexually dimorphic liver isozymes, increased several glucocorticoid responsive isozymes, elevated glucagon/insulin ratios, produced less microsomal superoxide and enhanced the capacity for utilzing detoxicating metabolic pathways. Calorically restricted rats have less than half the number of aflatoxin ($AFB_1$)-DNA adducts than ad libitum animals and urinary excretion of $AFB_1$ was increased significantly. Finally, DNA repair mechanisms are enhanced and oncogene expression is decreased in calorically restricted animals.

  • PDF

1D Proton NMR Spectroscopic Determination of Ethanol and Ethyl Glucuronide in Human Urine

  • Kim, Siwon;Lee, Minji;Yoon, Dahye;Lee, Dong-Kye;Choi, Hye-Jin;Kim, Suhkmann
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2413-2418
    • /
    • 2013
  • Forensic and legal medicine require reliable data to indicate excessive alcohol consumption. Ethanol is oxidatively metabolized to acetate by alcohol dehydrogenase and non-oxidatively metabolized to ethyl glucuronide (EtG), ethyl sulfate (EtS), phosphatidylethanol, or fatty acid ethyl esters (FAEE). Oxidative metabolism is too rapid to provide biomarkers for the detection of ethanol ingestion. However, the non-oxidative metabolite EtG is a useful biomarker because it is stable, non-volatile, water soluble, highly sensitive, and is detected in body fluid, hair, and tissues. EtG analysis methods such as mass spectroscopy, chromatography, or enzyme-linked immunosorbent assay techniques are currently in use. We suggest that nuclear magnetic resonance (NMR) spectroscopy could be used to monitor ethanol intake. As with current conventional methods, NMR spectroscopy doesn't require complicated pretreatments or sample separation. This method has the advantages of short acquisition time, simple sample preparation, reproducibility, and accuracy. In addition, all proton-containing compounds can be detected. In this study, we performed $^1H$ NMR analyses of urine to monitor the ethanol and EtG. Urinary samples were collected over time from 5 male volunteers. We confirmed that ethanol and EtG signals could be detected with NMR spectroscopy. Ethanol signals increased immediately upon alcohol intake, but decreased sharply over time. In contrast, EtG signal increased and reached a maximum about 9 h later, after which the EtG signal decreased gradually and remained detectable after 20-25 h. Based on these results, we suggest that $^1H$ NMR spectroscopy may be used to identify ethanol non-oxidative metabolites without the need for sample pretreatment.

Current Status of Systems Biology in Traditional Chinese medicine - in regards to influences to Korean Medicine (최근 중의학에서 시스템생물학의 발전 현황 - 한의학에 미치는 영향 및 시사점을 중심으로 -)

  • Lee, Seungeun;Lee, Sundong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.1-13
    • /
    • 2017
  • Objectives : This paper serves to explore current trends of systems biology in Traditional Chinese Medicine (TCM) and examine how it may influence the Traditional Korean medicine. Methods : Literature review method was collectively used to classify Introduction to systems biology, diagnosis and syndrome classification of systems biology in TCM perspective, physiotherapy including acupuncture, herbs and formula functions, TCM systems biology, and directions of academic development. Results : The term 'Systems biology' is coined as a combination of systems science and biology. It is a field of study that tries to understand living organism by establishing a theory based on an ideal model that analyzes and predicts the desired output with understanding of interrelationships and dynamics between variables. Systems biology has an integrated and multi-dimensional nature that observes the interaction among the elements constructing the network. The current state of systems biology in TCM is categorized into 4 parts: diagnosis and syndrome, physical therapy, herbs and formulas and academic development of TCM systems biology and its technology. Diagnosis and syndrome field is focusing on developing TCM into personalized medicine by clarifying Kidney yin deficiency patterns and metabolic differences among five patterns of diabetes and analyzing plasma metabolism and biomarkers of coronary heart disease patients. In the field of physical therapy such as acupuncture and moxibustion, researchers discovered the effect of stimulating acupoint ST40 on gene expression and the effects of acupuncture on treating functional dyspepsia and acute ischemic stroke. Herbs and formulas were analyzed with TCM network pharmacology. The therapeutic mechanisms of Si Wu Tang and its series formulas are explained by identifying potential active substances, targets and mechanism of action, including metabolic pathways of amino acid and fatty acid. For the academic development of TCM systems biology and its technology, it is necessary to integrate massive database, integrate pharmacokinetics and pharmacodynamics, as well as systems biology. It is also essential to establish a platform to maximize herbal treatment through accumulation of research data and diseases-specific, or drug-specific network combined with clinical experiences, and identify functions and roles of molecules in herbs and conduct animal-based studies within TCM frame. So far, few literature reviews exist for systems biology in traditional Korean medicine and they merely re-examine known efficacies of simple substances, herbs and formulas. For the future, it is necessary to identify specific mechanisms of working agents and targets to maximize the effects of traditional medicine modalities. Conclusions : Systems biology is widely accepted and studied in TCM and already advanced into a field known as 'TCM systems biology', which calls for the study of incorporating TCM and systems biology. It is time for traditional Korean medicine to acknowledge the importance of systems biology and present scientific basis of traditional medicine and establish the principles of diagnosis, prevention and treatment of diseases. By doing so, traditional Korean medicine would be innovated and further developed into a personalized medicine.

Antioxidant and Anti-Obesity Effect of SM17 in High-Fat Diet Induced C57BL/6 Mice (고지방식이로 비만을 유도한 C57BL/6 마우스에서 SM17의 항산화 및 항비만 효과)

  • Kim, Soo Hyun;Kim, Su Ji;Kim, Kyeong Jo;Lee, Ah Reum;Roh, Seong-Soo;Lee, Young Cheol
    • The Korea Journal of Herbology
    • /
    • v.32 no.5
    • /
    • pp.47-55
    • /
    • 2017
  • Objectives : Obesity is caused by the excess accumulation of fat in the body due to energy imbalance, and it causes various diseases. The aim of this study was to investigate an anti-obesity efficacy and an antioxidant activity of water from herbal mixture extract (SM17). Methods : The antioxidant activities were evaluated through radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals. To evaluated anti-obesity effect of SM17, we used a high fat diet fed mouse model. The SM17 (150 mg/kg body weight/day, p.o.) was treated every day for 6 weeks to C57BL/6 mice. Body weight and food intake were measured every day. The changes of reactive oxygen species (ROS), alanine aminotransferanse (ALT), aspartate aminotransferase (AST), triglycerids (TG) and total cholesterol (TC) in serum were analyzed after experiment. Also, expression of lipid metabolism related proteins were investigated by western blot analysis. Results : It was effective in antioxidant measurements, SM17 administration inhibited the biomarkers of lipid metaboism in serum and tissues. The administration of SM17 showed a significant reduction of body and tissue weight. Morever, it decreased ROS, ALT, AST, TG and TC in serum, compared with those of the obese mice. Adipogenesis-related protein expressions increased in obese mice compared to normal mice. However, SM17 group exhibited the down-expression of these proteins. Conclusion : A SM17 aqueous extract has a great effect on the stimulation (AMPK) activation, and may have a benefit to reduce a fatty acid metabolism through inhibition of lipid accumulation.

Gangjihwan Reduces Body Weight Gain in a ob/ob Female Mice (Ob/Ob 비만마우스 모델에서 강지환(降脂丸)의 체중감량 효과)

  • Baek, Song Young;Lee, Hye Rim;Park, Ju Hye;Yoon, Michung;Yoon, Yoosik;Yang, Heejung;Choi, Yung Hyun;Shin, Soon Shik
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.193-207
    • /
    • 2017
  • Objectives : This study was designed to investigate anti-obesity effects of DF in a ob/ob mouse model. Methods : Fifteen-week-old ob/ob mice were divided into four groups: a normal lean group given a standard diet, an ob/ob control group given a standard diet, and DF(1) and DF(2) groups given a standard diet with DF(1) (300 mg/kg), and DF(2) (600 mg/kg), respectively. After 10 weeks of treatment, body weight gain, feeding efficiency ratio, blood lipid markers, fat weight and histology were examined. Results : Body weight gain and fat mass were significantly decreased in DF(1) and DF(2) groups compared with control. The extent of decreases was eminent in DF(2) group. Feeding efficiency ratio were significantly decreased in DF(2) group compared with control. Consistent with their effects on body weight gain and fat mass, circulating concentrations of LDL, total cholesterol, free fatty acid, and insulin were decreased in DF(2) group compared with control. The size of adipocytes were significantly decreased by DF(2) compared with control. Consistent with their effects on body weight gain, hepatic lipid accumulation and liver weights were reduced in DF compared with control. Conclusions : In conclusion, these results suggest that DF not only decrease feeding efficiency ratio, and blood anti-obesity biomarkers, but also reduce fat mass, contributing to the improvement of obesity. DF also inhibits hepatic lipid accumulation.