• 제목/요약/키워드: fatigue property

검색결과 276건 처리시간 0.026초

Development of Fatigue Performance Model of Asphalt Concrete using Dissipate Energy

  • Kim, Nak-Seok
    • 한국방재학회 논문집
    • /
    • 제10권3호
    • /
    • pp.39-43
    • /
    • 2010
  • 본 연구의 주목적은 아스팔트 혼합물의 피로균열에 대한 예측모델을 개발하는 것이다. 아스팔트 혼합물의 피로균열 시험을 위하여 응력제어 간접인장피로 시험이 수행되었다. 피로균열에 대한 예측모델 개발을 위하여 내적손상비 증가 개념이 도입되었다. 내적손상비증가 개념에서는 방출에너지 개념을 주로 사용하였으며 기준인장변형율 및 변형율 추이 요소 등이 추가로 사용되었다. 피로시험에서 나타난 방출에너지의 원인은 아스팔트 콘크리트 시료 내부의 손상증가와 재료 자체가 갖고 있는 고유의 점탄성 특성에 기인하는 것으로 판단된다. 방출에너지는 하중재하 횟수가 증가함에 따라 점차 증가함을 보였다.

축계용 단조강재 보수 용접부의 피로 파괴 특성에 관한 연구 (A Study on the Effect of the Buliding Up by Welding on the Fatigue Fracture Behaviors for the Forged Steel)

  • 김영식;김종호;한명수;손병영
    • 한국해양공학회지
    • /
    • 제5권1호
    • /
    • pp.97-105
    • /
    • 1991
  • In this paper, the fatigue strength and the fatigue crack propagation behaviors of the round bar specimens which were spirally built up by welding and subsequently hardened by quenching were investigated. The material used was SF60 which was whdely employed in mechanical components, especially shafts. Fatigue tests were conducted at the fully reversed condition(R=-1) and axial and load control in the room temperature ahd air environment. The experimental results were expressed by both the range of stress intensity factor ($\Delta{K}$) and the effective range of stress intensity factor ($\Delta{K}_{eff}$). It was clarified that applying of quenching after the building up welding process improved the fatigue strength and the gatigue crack propagation property in the low range of $\Delta{K}$ of the built up round bar specimen.

  • PDF

Rapid S-N type life estimation for low cycle fatigue of high-strength steels at a low ambient temperature

  • Feng, Liuyang;Qian, Xudong
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.777-792
    • /
    • 2019
  • This paper presents a new efficient approach to estimate the S-N type fatigue life assessment curve for S550 high strength steels under low-cycle actions at -60℃. The proposed approach combines a single set of monotonic tension test and one set of fatigue tests to determine the key material damage parameters in the continuum damage mechanics framework. The experimental program in this study examines both the material response under low-cycle actions. The microstructural mechanisms revealed by the Scanning Electron Microscopy (SEM) at the low temperature, furthermore, characterizes the effect due to different strain ratios and low temperature on the low-cycle fatigue life of S550 steels. Anchored on the experimental results, this study validates the S-N curve determined from the proposed approach. The S-N type curve determined from one set of fatigue tests and one set of monotonic tension tests estimates the fatigue life of all specimens under different strain ratios satisfactorily.

피로누적에 따른 최적 비행시간 산출에 관한 연구 (A Study on the Optimal Flight Time According to the Amount of Fatigue)

  • 이승훈;윤봉수
    • 한국국방경영분석학회지
    • /
    • 제24권1호
    • /
    • pp.41-57
    • /
    • 1998
  • Since the aircraft has a property of moving in the three-dimensional space, it may cause personally and financially critical damage in the case of an accident. Among the causes of aircraft accident, human factor has occupied about 70% of all accidents. Specially, fatigue among human's problems has been studied earlier than any other factor. Fatigue has been the cause of 75% of accidents that are related to human factor. So many studies have been conducted. But the direction of these studies mainly attach importance to the sleep loss and circadian rhythm. Limitation for flight time of ICAO is 8 hours per day, civil airlines in domestic line also adopt the limitation. But this rule is not based on human's performance but compromise between labor and management. The long-haul flight brings about a mental block to pilot. This mental block decreases performance of pilot and loses a lot of important information. So this may cause many accidents. This paper is to offer optimal flight time according to the amount of fatigue due to increasing flight time. The optimal flight time is searched through the field experiment. The experiment has adopted two methods. One is to examine pilot's objective fatigue accumulation rate through the critical fusion frequency, and another is to investigate pilot's subjective fatigue feeling through the fatigue subjective symptoms investigation table.

  • PDF

변형률속도효과를 고려한 일반냉연강판 점용접부의 피로수명평가 (Fatigue Life Evaluation of Spot Weldments of SPC Sheet Including Strain Rate Effect)

  • 송준혁;나석찬;유효선;강희용;양성모
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.48-53
    • /
    • 2006
  • A methodology is described for predicting the fatigue life of the resistance spot weldment including strain rate effect. Because it is difficult to perform a physical failure test with high strain rate, an analytical method is necessary to get the mechanical properties of various strain rate, To this end, quasi-static tensile-shear tests at several strain rate were performed on spot weldments of SPC. These test provided the empirical data with the strain rate. With these results, we formulated the function of fatigue life prediction using the lethargy coefficient which is the global material property from tensile test. And, we predicted the fatigue life of spot weldment at dynamic strain rate. To confirm this method for fatigue life prediction, analytical results were compared with the experimental fatigue data.

견인력과 접촉표면 제거가 접촉피로수명에 미치는 영향 (Effect of Metal Removal and Traction Force on Contact Fatigue Life)

  • 서정원;허현무;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1384-1391
    • /
    • 2005
  • Damage often occurs on the surface of railway wheels due to wheel-rail contact fatigue. It should be removed before reaching wheel failure, because wheel failure can cause derailment with loss of life and property. The increase or decrease of the contact fatigue lift by the metal removal of the contact surface were investigated by many researchers, but they have not considered initial residual stress and traction force. The railway wheel has the initial residual stress formed during the manufacturing process, and the residual stress is changed by thermal stress induced by braking. The traction force and residual stress are operated on wheels of locomotive and electric motor vehicle. In this study, the effect of metal removal depth on the contact fatigue life for a railway wheel has been evaluated by applying lolling contact fatigue test. The effect of the traction force and metal removal on the contact fatigue life has been estimated by finite element analysis. It has been found that the initial residual stress determines the amount of metal removal depth if the traction coefficient is less than 0.15. If the traction coefficient is greater than 0.2, however, the amount of metal removal depth is independent on the intial residual stress.

구조용강의 용접가공에 따른 피로균열진전에 미치는 응력비의 영향 (Effect of Stress Ratio on Fatigue Crack Propagation Processing of Structural Steel)

  • 박경동;신영진;이주영
    • 한국기계가공학회지
    • /
    • 제5권4호
    • /
    • pp.65-71
    • /
    • 2006
  • The lightness of components required on marine and shipbuilding industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part on current industries. In this study, it is investigated about endurance and fatigue crack propagation rate of according to welding methods such as SMAW, FCAW and SAW commonly used for welding structures in present. Endurance limits carried out highly in the order of SMAW, FCAW, SAW and fatigue crack propagation rate out lowly in the order of SMAW, FCAW, SAW. By these results, it is needed to use SMAW welding method for welding structures with small welding capacity and FCAW, SAW methods for large welding structures after consideration about economic gains and operation efficiency of welding. Fatigue crack propagation rate is more affected by strength of welding materials than endurance limit of welding materials according to welding methods.

  • PDF

자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동 (High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys)

  • 박종수;성시영;한범석;정창렬;이기안
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

GMAW 용접조건을 고려한 자동차 AHSS 샤시부품의 내구해석 (Durability Analysis of Automotive AHSS Component Considering GMAW Condition)

  • 권혁선
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.83-83
    • /
    • 2009
  • The automotive chassis components are structural assemblies that support the engine, suspension, and steering components of the vehicle. For the development of AHSS components, the durability analysis is important. In this paper, the low cycle fatigue property of AHSS was evaluated for the geometry complex and local plasticity in the base material. The GMAW optimization was implemented for the weld soundness using the moving least square method. And the weld S-N curves of AHSS were evaluated to access durability analysis for the weld region. For the verification, the durability analysis of the couple torsion beam axle (CTBA) was performed and compared to the rig test result. The durability analysis using the low cycle fatigue property and the evaluated weld S-N curve of AHSS met the good agreement with the test result.

  • PDF

윤활환경에 따라 발생하는 소성변형량과 저주기 피로물성을 이용한 스커핑 수명 예측 (The Prediction of Scuffing Life due to Plastic Deformation and Low-cycle Fatigue Properties Under Various Lubricated Conditions)

  • 김병주;이영제
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.7-14
    • /
    • 1998
  • A correlation between the low-cycle fatigue life and the scuffing-failure life is demonstrated using the plastic strain increment in boundary lubricated sliding. Loadings proportional to hardness with three different lubricated conditions were used to evaluate the plastic strain increments. As the results of scuffing tests using vacuum pump oils in nitrogen gas, plastic strain increment shows 0.0062, and in the mineral oils and commercial engine oils in air, plastic strain increments show 0.0042 and 0.00092. Those are very useful to describe quantitatively the real lubricated sliding conditions, and are very effective to find the relation between the low-cycle fatigue life and the scuffing-failure life.