Browse > Article
http://dx.doi.org/10.3365.KJMM.2010.48.01.028

High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys  

Park, Jong-Soo (School of Advanced Materials Engineering, Andong National University)
Sung, Si-Young (Korea Automotive Technology Institute)
Han, Bum-Suck (Korea Automotive Technology Institute)
Jung, Chang-Yeol (Korea Institute of Industrial Technology)
Lee, Kee-Ahn (School of Advanced Materials Engineering, Andong National University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.1, 2010 , pp. 28-38 More about this Journal
Abstract
High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.
Keywords
Heat resisting aluminum; casting; cylinder head; high temperatue; high cycle fatigue; Low cycle fatigue; tensile property;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 D. T. Raske and J. D. Morrow, Manual on low cycle fatigue testing, American Society for Testing and Materials (1996)
2 C. C. Engler-pinto, J. V. Iasccki, J. M. Boilcau, and J. E. Allison, Society of Automotive Engineers 1, 1029 (2004)
3 K. H. Lee, Y. N. Kwon, and S. H. Lee, J. Kor. Inst. Met. & Mater. 45, 18 (2007)
4 W. W. Bose-Filho, E. R. de Freitas, V. F. da Silva, M. T. Milan, and D. Spinelli, Int. J. of Fatigue 29, 1846 (2007)   DOI   ScienceOn
5 W. S. Miller, L. Zhuang, L. Bottema, A. J. Wittebrood, P. De Smet, A. Hazler, and A. Vieregge, Mater. Sci. Eng. A 280, 37 (2000)   DOI   ScienceOn
6 S. W. Han and S. W. Kim, J. Kor Foundrymen's Soc. 22, 61 (2002)   과학기술학회마을
7 U. Bischofberger, G. Neitc, and H. E. Exner, Key Eng. Mater. 44-45, 333 (1990)   DOI
8 J. A. Wasynezuk, W. D. Hanna, F. D. Ross, and T. A. Freitag, Fatigue of Electronic Materials, p.110 Atlanta, USA (1994)
9 S. Ashley, Mech. Eng. 119, 56 (1994)
10 E, Rincon, H. F. Lopez, M. M. Cisneros, H. Mancha, and M. A. Cisneros, Mater. Sci. & Eng. A 452-453, 682 (2007)   DOI   ScienceOn
11 L. E. Larsson, A. Wickberg, and G. Gustafsson, Alluminio 53, 29 (1984)
12 H. R. Ammar, A. M. Samuel, and F. H. Smuel, Mater. Sci. & Eng. A 473, 67 (2008)
13 J. S. Park, K. A. Lee, and C. S. Lee, Metals & Materials 5, 559 (1999)   DOI
14 H. Hayashi and T. Nakagawa, J. Matter. Proc. Tech. 46, 455 (1994)   DOI   ScienceOn
15 C. H. Caccres, Scr. Metall. 32, 1851 (1995)   DOI   ScienceOn
16 C. H. Caceres and B. I. Selling, Mater, Sci. Eng. A 22, 109 (1996)
17 A. J. Moffat, S. Barnes, B.G. Mellor, and P. A. S. Reed, Int. J. of Fatigue 27, 1564 (2005)   DOI   ScienceOn