Browse > Article
http://dx.doi.org/10.12989/scs.2019.33.6.777

Rapid S-N type life estimation for low cycle fatigue of high-strength steels at a low ambient temperature  

Feng, Liuyang (Department of Civil and Environmental Engineering, Centre for Offshore Research and Engineering, National University of Singapore)
Qian, Xudong (Department of Civil and Environmental Engineering, Centre for Offshore Research and Engineering, National University of Singapore)
Publication Information
Steel and Composite Structures / v.33, no.6, 2019 , pp. 777-792 More about this Journal
Abstract
This paper presents a new efficient approach to estimate the S-N type fatigue life assessment curve for S550 high strength steels under low-cycle actions at -60℃. The proposed approach combines a single set of monotonic tension test and one set of fatigue tests to determine the key material damage parameters in the continuum damage mechanics framework. The experimental program in this study examines both the material response under low-cycle actions. The microstructural mechanisms revealed by the Scanning Electron Microscopy (SEM) at the low temperature, furthermore, characterizes the effect due to different strain ratios and low temperature on the low-cycle fatigue life of S550 steels. Anchored on the experimental results, this study validates the S-N curve determined from the proposed approach. The S-N type curve determined from one set of fatigue tests and one set of monotonic tension tests estimates the fatigue life of all specimens under different strain ratios satisfactorily.
Keywords
low-cycle fatigue; low temperature; continuum damage mechanics; cyclic material property; mean stress relaxation;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 ABS (2014), Fatigue assessment of offshore structures, American Bureau of Shipping.
2 Aeran, A., Siriwardane, S.C., Mikkelsen, O. and Langen, I. (2017), "A new nonlinear fatigue damage model based only on SN curve parameters", Int. J. Fatigue, 103, 327-341. https://doi.org/10.1016/j.ijfatigue.2017.06.017   DOI
3 Kourousis, K.I. and Dafalias, Y.F. (2013), "Constitutive modeling of Aluminum Alloy 7050 cyclic mean stress relaxation and ratcheting", Mech. Res. Commun., 53, 53-56. https://doi.org/10.1016/j.mechrescom.2013.08.001   DOI
4 Bonora, N. and Newaz, G. (1998), "Low cycle fatigue life estimation for ductile metals using a nonlinear continuum damage mechanics model", Int. J. Solids Struct., 35, 1881-1894. https://doi.org/10.1016/S0020-7683(97)00139-X   DOI
5 Amiri, M. and Khonsari, M. (2010), "Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load", Int. J. Fatigue, 32, 382-389. https://doi.org/10.1016/j.ijfatigue.2009.07.015   DOI
6 Arcari, A., De Vita, R. and Dowling, N.E. (2009), "Mean stress relaxation during cyclic straining of high strength aluminum alloys", Int. J. Fatigue, 31, 1742-1750. https://doi.org/10.1016/j.ijfatigue.2009.01.021   DOI
7 ASTM (2012), E606/E606M-12. Standard Test Method for Strain-Controlled Fatigue Testing, ASTM International, West Conshohocken, PA, USA.
8 Botshekan, M., Degallaix, S., Desplanques, Y. and Pol, J. (1998), "Tensile and LCF properties of AISI 316LN SS at 300 and 77 K.", Fatigue Fract. Eng. Mater. Struct., 21, 651-660. https://doi.org/10.1046/j.1460-2695.1998.00058.x   DOI
9 Branco, R., Costa, J. and Antunes, F. (2012), "Low-cycle fatigue behaviour of 34CrNiMo6 high strength steel", Theor. Appl. Fract. Mech., 58, 28-34. https://doi.org/10.1016/j.tafmec.2012.02.004   DOI
10 Chaboche, J.-L. (1986), "Time-independent constitutive theories for cyclic plasticity", Int. J. Plast., 2, 149-188. https://doi.org/10.1016/0749-6419(86)90010-0   DOI
11 Veerababu, J., Goyal, S., Sandhya, R. and Laha, K. (2017), "Low cycle fatigue behaviour of Grade 92 steel weld joints", Int. J. Fatigue, 105, 60-70. https://doi.org/10.1016/j.ijfatigue.2017.08.013   DOI
12 Sarkar, A., Kumawat, B.K. and Chakravartty, J. (2015), "Low cycle fatigue behavior of a ferritic reactor pressure vessel steel", J. Nucl. Mater., 462, 273-279. https://doi.org/10.1016/j.jnucmat.2015.04.015   DOI
13 Shang, D.-G. and Yao, W.-X. (1999), "A nonlinear damage cumulative model for uniaxial fatigue", Int. J. Fatigue, 21, 187-194. https://doi.org/10.1016/S0142-1123(98)00069-3   DOI
14 Shibata, K., Kishimoto, Y., Namura, N. and Fujita, T. (1985), "Cyclic softening and hardening of austenitic steels at low temperatures", Fatigue Low Temperat. https://doi.org/10.1520/STP32745S
15 Veritas, D.N. (2010), Fatigue design of offshore steel structures, DNV Recommended Practice DNV-RP-C203.
16 Walters, C.L., Alvaro, A. and Maljaars, J. (2016), "The effect of low temperatures on the fatigue crack growth of S460 structural steel", Int. J. Fatigue, 82, 110-118. https://doi.org/10.1016/j.ijfatigue.2015.03.007   DOI
17 Wang, M., Shi, Y., Wang, Y., Xiong, J. and Chen, H. (2013), "Degradation and damage behaviors of steel frame welded connections", Steel Compos. Struct., Int. J., 15(4), 357-377. https://doi.org/10.12989/scs.2013.15.4.357   DOI
18 Ye, D. and Wang, Z. (2001), "A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue", Int. J. Fatigue, 23, 679-687. https://doi.org/10.1016/S0142-1123(01)00027-5   DOI
19 Chaboche, J. and Lesne, P. (1988), "A non-linear continuous fatigue damage model", Fatigue Fract. Eng. Mater. Struct., 11, 1-17. https://doi.org/10.1111/j.1460-2695.1988.tb01216.x   DOI
20 Chaboche, J.-L. (1989), "Constitutive equations for cyclic plasticity and cyclic viscoplasticity", Int. J. Plast., 5, 247-302. https://doi.org/10.1016/0749-6419(89)90015-6   DOI
21 Lemaitre, J. (2012), A course on damage mechanics, Springer Science & Business Media.
22 Lau, J.H., Pan, S.H. and Chang, C. (2002), "A new thermal-fatigue life prediction model for wafer level chip scale package (WLCSP) solder joints", J. Electron. Packag., 124, 212-220. https://doi.org/10.1115/1.1462625   DOI
23 Lee, C.-H., Van Do, V.N. and Chang, K.-H. (2014), "Analysis of uniaxial ratcheting behavior and cyclic mean stress relaxation of a duplex stainless steel", Int. J. Plast., 62, 17-33. https://doi.org/10.1016/j.ijplas.2014.06.008   DOI
24 Lefebvre, D. and Ellyin, F. (1984), "Cyclic response and inelastic strain energy in low cycle fatigue", Int. J. Fatigue, 6, 9-15. https://doi.org/10.1016/0142-1123(84)90003-3   DOI
25 Lemaitre, J. and Desmorat, R. (2005), Engineering damage mechanics: ductile, creep, fatigue and brittle failures, Springer Science & Business Media.
26 Liao, X., Wang, Y., Qian, X. and Shi, Y. (2018), "Fatigue crack propagation for Q345qD bridge steel and its butt welds at low temperatures", Fatigue Fract. Eng. Mater. Struct., 41(3), 675-687. https://doi.org/10.1111/ffe.12727   DOI
27 Lim, C., Choi, W. and Sumner, E.A. (2013), "Parametric study using finite element simulation for low cycle fatigue behavior of end plate moment connection", Steel Compos. Struct., Int. J., 14(1), 57-71. https://doi.org/10.12989/scs.2013.14.1.057   DOI
28 Liu, Y., Xiong, Z., Feng, Y. and Jiang, L. (2017), "Concrete-filled rectangular hollow section X joint with Perfobond Leister rib structural performance study: Ultimate and fatigue experimental Investigation", Steel Compos. Struct., Int. J., 24(4), 455-465. https://doi.org/10.12989/scs.2017.24.4.455
29 Chen, S., Qian, X. and Ahmed, A. (2016), "Cleavage fracture assessment for surface-cracked plate fabricated from high strength steels", Eng. Fract. Mech., 161, 1-20. https://doi.org/10.1016/j.engfracmech.2016.04.039   DOI
30 Zhang, Z. and Qian, X. (2016), "A local approach to estimate cleavage angles in steel under mixed-mode I and II conditions", Eng. Fract. Mech., 166, 164-181. https://doi.org/10.1016/j.engfracmech.2016.08.024   DOI
31 Darveaux, R. (2002), "Effect of simulation methodology on solder joint crack growth correlation and fatigue life prediction", J. Electron. Packag., 124, 147-154. https://doi.org/10.1109/ECTC.2000.853299   DOI
32 Ellyin, F. (1989), Cyclic strain energy density as a criterion for multiaxial fatigue failure, Biaxial and Multiaxial Fatigue, (Edited by M.W. Brown and K.J. Miller), Mechanical Engineering Publications, London, UK, pp. 571-583.
33 Ertas, A.H. and Yilmaz, A.F. (2014), "Simulation-based fatigue life assessment of a mercantile vessel", Struct. Eng. Mech., Int. J., 50(6), 835-852. https://doi.org/10.12989/sem.2014.50.6.835   DOI
34 Feng, L. and Qian, X. (2017), "A hot-spot energy indicator for welded plate connections under cyclic axial loading and bending", Eng. Struct., 147, 598-612. https://doi.org/10.1016/j.engstruct.2017.06.021   DOI
35 Ghazijahani, T.G., Jiaoa, H. and Hollowayb, D. (2015), "Fatigue tests of damaged tubes under flexural loading", Steel Compos. Struct., Int. J., 19(1), 223-236. https://doi.org/10.12989/scs.2015.19.1.223   DOI
36 Feng, L. and Qian, X. (2018), "Low cycle fatigue test and enhanced lifetime estimation of high-strength steel S550 under different strain ratios", Mar. Struct., 61, 343-360. https://doi.org/10.1016/j.marstruc.2018.06.011   DOI
37 Frederick, C.O. and Armstrong, P. (1966), A mathematical representation of the multiaxial Bauschinger effect, CEGB Report, RD/B/n731.
38 Gao, C., Ren, T. and Liu, M. (2019), "Low-cycle fatigue characteristics of Cr18Mn18N0. 6 austenitic steel under strain controlled condition at $100^{\circ}C$", Int. J. Fatigue, 118, 35-43. https://doi.org/10.1016/j.ijfatigue.2018.08.038   DOI
39 Maalek, S., Heidary-Torkamani, H., Pirooz, M.D. and Naeeini, S.T.O. (2019), "Numerical investigation of cyclic performance of frames equipped with tube-in-tube buckling restrained braces", Steel Compos. Struct., Int. J., 30(3), 201-215. https://doi.org/10.12989/scs.2019.30.3.201
40 Maachou, S., Boulenouar, A., Benguediab, M., Mazari, M. and Ranganathan, N. (2016), "Plastic energy approach prediction of fatigue crack growth", Struct. Eng. Mech., Int. J., 59(5), 885-899. https://doi.org/10.12989/sem.2016.59.5.885   DOI
41 Macha, E. and Sonsino, C. (1999), "Energy criteria of multiaxial fatigue failure", Fatigue. Fract. Eng. Mater. Struct., 22, 1053-1070.   DOI
42 Okamura, H., Ohtani, R., Saito, K., Kimura, K., Ishii, R., Fujiyama, K., Hongo, S., Iseki, T. and Uchida, H. (1999), "Basic investigation for life assessment technology of modified 9Cr-1Mo steel", Nucl. Eng. Des., 193, 243-254. https://doi.org/10.1016/S0029-5493(99)00181-8   DOI
43 Paul, S.K., Stanford, N., Taylor, A. and Hilditch, T. (2015), "The effect of low cycle fatigue, ratcheting and mean stress relaxation on stress-strain response and microstructural development in a dual phase steel", Int. J. Fatigue, 80, 341-348. https://doi.org/10.1016/j.ijfatigue.2015.06.003   DOI
44 Perera, R., Gomez, S. and Alarcon, E. (2001), "Seismic assessment of steel structures through a cumulative damage", Steel. Compos. Struct., Int. J., 1(3), 283-294. https://doi.org/10.12989/scs.2001.1.3.283   DOI
45 Roy, S.C., Goyal, S., Sandhya, R. and Ray, S. (2012), "Low cycle fatigue life prediction of 316 L (N) stainless steel based on cyclic elasto-plastic response", Nucl. Eng. Des., 253, 219-225. https://doi.org/10.1016/j.nucengdes.2012.08.024   DOI
46 Zhang, L., Liu, X., Wu, S., Ma, Z. and Fang, H. (2013), "Rapid determination of fatigue life based on temperature evolution", Int. J. Fatigue, 54, 1-6. https://doi.org/10.1016/j.ijfatigue.2013.04.002   DOI
47 Sakr, M.A., Eladly, M.M., Khalifa, T. and El-Khoriby, S. (2019), "Cyclic behaviour of infilled steel frames with different beam-tocolumn connection types", Steel Compos. Struct., Int. J., 30(5), 443-456. https://doi.org/10.12989/scs.2019.30.5.443
48 Groza, M. and Varadi, K. (2017), "Total fatigue life analysis of a nodular cast iron plate specimen with a center notch", Adv. Mech. Eng., 9(12), 1-11. https://doi.org/10.1177/1687814017742546
49 Guo, P., Qian, L., Meng, J., Zhang, F. and Li, L. (2013), "Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel", Mater. Sci. Engi. A- Struct. Mater., 584, 133-142. https://doi.org/10.1016/j.msea.2013.07.020   DOI
50 Hobbacher, A. (2016), Recommendations for fatigue design of welded joints and components, (2nd Edition), International Institute of Welding, Springer.
51 Zhao, X., Tian, Y., Jia, L.-J. and Zhang, T. (2018), "Ultra-low cycle fatigue tests of Class 1 H-shaped steel beams under cyclic pure bending", Steel Compos. Struct., Int. J., 26(4), 439-452. https://doi.org/10.12989/scs.2018.26.4.439
52 Malagi, R.R. and Danawade, B.A. (2015), "Fatigue behavior of circular hollow tube and wood filled circular hollow steel tube", Steel. Compos. Struct., Int. J., 19(3), 585-599. https://doi.org/10.12989/scs.2015.19.3.585   DOI
53 Koh, S. and Stephens, R. (1991), "Mean stress effects on low cycle fatigue for a high strength steel", Fatigue Fract. Eng. Mater. Struct., 14, 413-428. https://doi.org/10.1111/j.1460-2695.1991.tb00672.x   DOI
54 ABAQUS (2014), Abaqus Analysis User's Guide. Version 6.14. Providence, RI, USA. Version 6.14, Dassault Systemes Simulia Corp.
55 Hu, X., Huang, L., Wang, W., Yang, Z., Sha, W., Wang, W., Yan, W. and Shan, Y. (2013), "Low cycle fatigue properties of CLAM steel at room temperature", Fusion. Eng. Des., 88, 3050-3059. https://doi.org/10.1016/j.fusengdes.2013.08.001   DOI
56 Huang, Z., Wang, O., Wagner, D. and Bathias, C. (2014), "Constitutive model coupled with damage for carbon manganese steel in low cycle fatigue", Steel Compos. Struct., Int. J., 17(2), 185-198. https://doi.org/10.12989/scs.2014.17.2.185   DOI
57 Ju, X., Zeng, Z., Zhao, X. and Liu, X. (2018), "Fatigue study on additional cutout between U shaped rib and floorbeam in orthotropic bridge deck", Steel Compos. Struct., Int. J., 28(3), 319-329. https://doi.org/10.12989/scs.2018.28.3.319
58 Kawasaki, T., Nakanishi, S., Sawaki, Y., Hatanaka, K. and Yokobori, T. (1975), "Fracture toughness and fatigue crack propagation in high strength steel from room temperature to $-180^{\circ}C$", Eng. Fract. Mech., 7(3), 465-472. https://doi.org/10.1016/0013-7944(75)90047-8   DOI